194 lines
5.7 KiB
Fortran
194 lines
5.7 KiB
Fortran
recursive subroutine splder(t,n,c,nc,k,nu,x,y,m,e,wrk,ier)
|
|
implicit none
|
|
c subroutine splder evaluates in a number of points x(i),i=1,2,...,m
|
|
c the derivative of order nu of a spline s(x) of degree k,given in
|
|
c its b-spline representation.
|
|
c
|
|
c calling sequence:
|
|
c call splder(t,n,c,nc,k,nu,x,y,m,e,wrk,ier)
|
|
c
|
|
c input parameters:
|
|
c t : array,length n, which contains the position of the knots.
|
|
c n : integer, giving the total number of knots of s(x).
|
|
c c : array,length nc, containing the b-spline coefficients.
|
|
c the length of the array, nc >= n - k -1.
|
|
c further coefficients are ignored.
|
|
c k : integer, giving the degree of s(x).
|
|
c nu : integer, specifying the order of the derivative. 0<=nu<=k
|
|
c x : array,length m, which contains the points where the deriv-
|
|
c ative of s(x) must be evaluated.
|
|
c m : integer, giving the number of points where the derivative
|
|
c of s(x) must be evaluated
|
|
c e : integer, if 0 the spline is extrapolated from the end
|
|
c spans for points not in the support, if 1 the spline
|
|
c evaluates to zero for those points, and if 2 ier is set to
|
|
c 1 and the subroutine returns.
|
|
c wrk : real array of dimension n. used as working space.
|
|
c
|
|
c output parameters:
|
|
c y : array,length m, giving the value of the derivative of s(x)
|
|
c at the different points.
|
|
c ier : error flag
|
|
c ier = 0 : normal return
|
|
c ier = 1 : argument out of bounds and e == 2
|
|
c ier =10 : invalid input data (see restrictions)
|
|
c
|
|
c restrictions:
|
|
c 0 <= nu <= k
|
|
c m >= 1
|
|
c t(k+1) <= x(i) <= x(i+1) <= t(n-k) , i=1,2,...,m-1.
|
|
c
|
|
c other subroutines required: fpbspl
|
|
c
|
|
c references :
|
|
c de boor c : on calculating with b-splines, j. approximation theory
|
|
c 6 (1972) 50-62.
|
|
c cox m.g. : the numerical evaluation of b-splines, j. inst. maths
|
|
c applics 10 (1972) 134-149.
|
|
c dierckx p. : curve and surface fitting with splines, monographs on
|
|
c numerical analysis, oxford university press, 1993.
|
|
c
|
|
c author :
|
|
c p.dierckx
|
|
c dept. computer science, k.u.leuven
|
|
c celestijnenlaan 200a, b-3001 heverlee, belgium.
|
|
c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
|
|
c
|
|
c latest update : march 1987
|
|
c
|
|
c++ pearu: 13 aug 20003
|
|
c++ - disabled cliping x values to interval [min(t),max(t)]
|
|
c++ - removed the restriction of the orderness of x values
|
|
c++ - fixed initialization of sp to double precision value
|
|
c
|
|
c ..scalar arguments..
|
|
integer n,nc,k,nu,m,e,ier
|
|
c ..array arguments..
|
|
real*8 t(n),c(nc),x(m),y(m),wrk(n)
|
|
c ..local scalars..
|
|
integer i,j,kk,k1,k2,l,ll,l1,l2,nk1,nk2,nn
|
|
real*8 ak,arg,fac,sp,tb,te
|
|
c++..
|
|
integer k3
|
|
c..++
|
|
c ..local arrays ..
|
|
real*8 h(6)
|
|
c before starting computations a data check is made. if the input data
|
|
c are invalid control is immediately repassed to the calling program.
|
|
ier = 10
|
|
if(nu.lt.0 .or. nu.gt.k) go to 200
|
|
c-- if(m-1) 200,30,10
|
|
c++..
|
|
if(m.lt.1) go to 200
|
|
c..++
|
|
c-- 10 do 20 i=2,m
|
|
c-- if(x(i).lt.x(i-1)) go to 200
|
|
c-- 20 continue
|
|
ier = 0
|
|
c fetch tb and te, the boundaries of the approximation interval.
|
|
k1 = k+1
|
|
k3 = k1+1
|
|
nk1 = n-k1
|
|
tb = t(k1)
|
|
te = t(nk1+1)
|
|
c the derivative of order nu of a spline of degree k is a spline of
|
|
c degree k-nu,the b-spline coefficients wrk(i) of which can be found
|
|
c using the recurrence scheme of de boor.
|
|
l = 1
|
|
kk = k
|
|
nn = n
|
|
do 40 i=1,nk1
|
|
wrk(i) = c(i)
|
|
40 continue
|
|
if(nu.eq.0) go to 100
|
|
nk2 = nk1
|
|
do 60 j=1,nu
|
|
ak = kk
|
|
nk2 = nk2-1
|
|
l1 = l
|
|
do 50 i=1,nk2
|
|
l1 = l1+1
|
|
l2 = l1+kk
|
|
fac = t(l2)-t(l1)
|
|
if(fac.le.0.) go to 50
|
|
wrk(i) = ak*(wrk(i+1)-wrk(i))/fac
|
|
50 continue
|
|
l = l+1
|
|
kk = kk-1
|
|
60 continue
|
|
if(kk.ne.0) go to 100
|
|
c if nu=k the derivative is a piecewise constant function
|
|
j = 1
|
|
do 90 i=1,m
|
|
arg = x(i)
|
|
c++..
|
|
c check if arg is in the support
|
|
if (arg .lt. tb .or. arg .gt. te) then
|
|
if (e .eq. 0) then
|
|
goto 65
|
|
else if (e .eq. 1) then
|
|
y(i) = 0
|
|
goto 90
|
|
else if (e .eq. 2) then
|
|
ier = 1
|
|
goto 200
|
|
endif
|
|
endif
|
|
c search for knot interval t(l) <= arg < t(l+1)
|
|
65 if(arg.ge.t(l) .or. l+1.eq.k3) go to 70
|
|
l1 = l
|
|
l = l-1
|
|
j = j-1
|
|
go to 65
|
|
c..++
|
|
70 if(arg.lt.t(l+1) .or. l.eq.nk1) go to 80
|
|
l = l+1
|
|
j = j+1
|
|
go to 70
|
|
80 y(i) = wrk(j)
|
|
90 continue
|
|
go to 200
|
|
|
|
100 l = k1
|
|
l1 = l+1
|
|
k2 = k1-nu
|
|
c main loop for the different points.
|
|
do 180 i=1,m
|
|
c fetch a new x-value arg.
|
|
arg = x(i)
|
|
c check if arg is in the support
|
|
if (arg .lt. tb .or. arg .gt. te) then
|
|
if (e .eq. 0) then
|
|
goto 135
|
|
else if (e .eq. 1) then
|
|
y(i) = 0
|
|
goto 180
|
|
else if (e .eq. 2) then
|
|
ier = 1
|
|
goto 200
|
|
endif
|
|
endif
|
|
c search for knot interval t(l) <= arg < t(l+1)
|
|
135 if(arg.ge.t(l) .or. l1.eq.k3) go to 140
|
|
l1 = l
|
|
l = l-1
|
|
go to 135
|
|
c..++
|
|
140 if(arg.lt.t(l1) .or. l.eq.nk1) go to 150
|
|
l = l1
|
|
l1 = l+1
|
|
go to 140
|
|
c evaluate the non-zero b-splines of degree k-nu at arg.
|
|
150 call fpbspl(t,n,kk,arg,l,h)
|
|
c find the value of the derivative at x=arg.
|
|
sp = 0.0d0
|
|
ll = l-k1
|
|
do 160 j=1,k2
|
|
ll = ll+1
|
|
sp = sp+wrk(ll)*h(j)
|
|
160 continue
|
|
y(i) = sp
|
|
180 continue
|
|
200 return
|
|
end
|