Timur A. Fatkhullin 5279d1c41a add FITPACK Fortran library
start developing of FITPACK C++ bindings
mount_server.cpp: fix compilation error with GCC15
2025-05-05 17:24:21 +03:00

444 lines
15 KiB
Fortran

recursive subroutine fpcons(iopt,idim,m,u,mx,x,w,ib,ie,k,s,nest,
* tol,maxit,k1,k2,n,t,nc,c,fp,fpint,z,a,b,g,q,nrdata,ier)
ccc implicit none c XXX: mmnin/nmin variables on line 61
c ..
c ..scalar arguments..
real*8 s,tol,fp
integer iopt,idim,m,mx,ib,ie,k,nest,maxit,k1,k2,n,nc,ier
c ..array arguments..
real*8 u(m),x(mx),w(m),t(nest),c(nc),fpint(nest),
* z(nc),a(nest,k1),b(nest,k2),g(nest,k2),q(m,k1)
integer nrdata(nest)
c ..local scalars..
real*8 acc,con1,con4,con9,cos,fac,fpart,fpms,fpold,fp0,f1,f2,f3,
* half,one,p,pinv,piv,p1,p2,p3,rn,sin,store,term,ui,wi
integer i,ich1,ich3,it,iter,i1,i2,i3,j,jb,je,jj,j1,j2,j3,kbe,
* l,li,lj,l0,mb,me,mm,new,nk1,nmax,nmin,nn,nplus,npl1,nrint,n8
c ..local arrays..
real*8 h(7),xi(10)
c ..function references
real*8 abs,fprati
integer max0,min0
c ..subroutine references..
c fpbacp,fpbspl,fpgivs,fpdisc,fpknot,fprota
c ..
c set constants
one = 0.1e+01
con1 = 0.1e0
con9 = 0.9e0
con4 = 0.4e-01
half = 0.5e0
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 1: determination of the number of knots and their position c
c ************************************************************** c
c given a set of knots we compute the least-squares curve sinf(u), c
c and the corresponding sum of squared residuals fp=f(p=inf). c
c if iopt=-1 sinf(u) is the requested curve. c
c if iopt=0 or iopt=1 we check whether we can accept the knots: c
c if fp <=s we will continue with the current set of knots. c
c if fp > s we will increase the number of knots and compute the c
c corresponding least-squares curve until finally fp<=s. c
c the initial choice of knots depends on the value of s and iopt. c
c if s=0 we have spline interpolation; in that case the number of c
c knots equals nmax = m+k+1-max(0,ib-1)-max(0,ie-1) c
c if s > 0 and c
c iopt=0 we first compute the least-squares polynomial curve of c
c degree k; n = nmin = 2*k+2 c
c iopt=1 we start with the set of knots found at the last c
c call of the routine, except for the case that s > fp0; then c
c we compute directly the polynomial curve of degree k. c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c determine nmin, the number of knots for polynomial approximation.
nmin = 2*k1
c find which data points are to be considered.
mb = 2
jb = ib
if(ib.gt.0) go to 10
mb = 1
jb = 1
10 me = m-1
je = ie
if(ie.gt.0) go to 20
me = m
je = 1
20 if(iopt.lt.0) go to 60
c calculation of acc, the absolute tolerance for the root of f(p)=s.
acc = tol*s
c determine nmax, the number of knots for spline interpolation.
kbe = k1-jb-je
mmin = kbe+2
mm = m-mmin
nmax = nmin+mm
if(s.gt.0.) go to 40
c if s=0, s(u) is an interpolating curve.
c test whether the required storage space exceeds the available one.
n = nmax
if(nmax.gt.nest) go to 420
c find the position of the interior knots in case of interpolation.
if(mm.eq.0) go to 60
25 i = k2
j = 3-jb+k/2
do 30 l=1,mm
t(i) = u(j)
i = i+1
j = j+1
30 continue
go to 60
c if s>0 our initial choice of knots depends on the value of iopt.
c if iopt=0 or iopt=1 and s>=fp0, we start computing the least-squares
c polynomial curve which is a spline curve without interior knots.
c if iopt=1 and fp0>s we start computing the least squares spline curve
c according to the set of knots found at the last call of the routine.
40 if(iopt.eq.0) go to 50
if(n.eq.nmin) go to 50
fp0 = fpint(n)
fpold = fpint(n-1)
nplus = nrdata(n)
if(fp0.gt.s) go to 60
50 n = nmin
fpold = 0.
nplus = 0
nrdata(1) = m-2
c main loop for the different sets of knots. m is a save upper bound
c for the number of trials.
60 do 200 iter = 1,m
if(n.eq.nmin) ier = -2
c find nrint, tne number of knot intervals.
nrint = n-nmin+1
c find the position of the additional knots which are needed for
c the b-spline representation of s(u).
nk1 = n-k1
i = n
do 70 j=1,k1
t(j) = u(1)
t(i) = u(m)
i = i-1
70 continue
c compute the b-spline coefficients of the least-squares spline curve
c sinf(u). the observation matrix a is built up row by row and
c reduced to upper triangular form by givens transformations.
c at the same time fp=f(p=inf) is computed.
fp = 0.
c nn denotes the dimension of the splines
nn = nk1-ib-ie
c initialize the b-spline coefficients and the observation matrix a.
do 75 i=1,nc
z(i) = 0.
c(i) = 0.
75 continue
if(me.lt.mb) go to 134
if(nn.eq.0) go to 82
do 80 i=1,nn
do 80 j=1,k1
a(i,j) = 0.
80 continue
82 l = k1
jj = (mb-1)*idim
do 130 it=mb,me
c fetch the current data point u(it),x(it).
ui = u(it)
wi = w(it)
do 84 j=1,idim
jj = jj+1
xi(j) = x(jj)*wi
84 continue
c search for knot interval t(l) <= ui < t(l+1).
86 if(ui.lt.t(l+1) .or. l.eq.nk1) go to 90
l = l+1
go to 86
c evaluate the (k+1) non-zero b-splines at ui and store them in q.
90 call fpbspl(t,n,k,ui,l,h)
do 92 i=1,k1
q(it,i) = h(i)
h(i) = h(i)*wi
92 continue
c take into account that certain b-spline coefficients must be zero.
lj = k1
j = nk1-l-ie
if(j.ge.0) go to 94
lj = lj+j
94 li = 1
j = l-k1-ib
if(j.ge.0) go to 96
li = li-j
j = 0
96 if(li.gt.lj) go to 120
c rotate the new row of the observation matrix into triangle.
do 110 i=li,lj
j = j+1
piv = h(i)
if(piv.eq.0.) go to 110
c calculate the parameters of the givens transformation.
call fpgivs(piv,a(j,1),cos,sin)
c transformations to right hand side.
j1 = j
do 98 j2 =1,idim
call fprota(cos,sin,xi(j2),z(j1))
j1 = j1+n
98 continue
if(i.eq.lj) go to 120
i2 = 1
i3 = i+1
do 100 i1 = i3,lj
i2 = i2+1
c transformations to left hand side.
call fprota(cos,sin,h(i1),a(j,i2))
100 continue
110 continue
c add contribution of this row to the sum of squares of residual
c right hand sides.
120 do 125 j2=1,idim
fp = fp+xi(j2)**2
125 continue
130 continue
if(ier.eq.(-2)) fp0 = fp
fpint(n) = fp0
fpint(n-1) = fpold
nrdata(n) = nplus
c backward substitution to obtain the b-spline coefficients.
if(nn.eq.0) go to 134
j1 = 1
do 132 j2=1,idim
j3 = j1+ib
call fpback(a,z(j1),nn,k1,c(j3),nest)
j1 = j1+n
132 continue
c test whether the approximation sinf(u) is an acceptable solution.
134 if(iopt.lt.0) go to 440
fpms = fp-s
if(abs(fpms).lt.acc) go to 440
c if f(p=inf) < s accept the choice of knots.
if(fpms.lt.0.) go to 250
c if n = nmax, sinf(u) is an interpolating spline curve.
if(n.eq.nmax) go to 430
c increase the number of knots.
c if n=nest we cannot increase the number of knots because of
c the storage capacity limitation.
if(n.eq.nest) go to 420
c determine the number of knots nplus we are going to add.
if(ier.eq.0) go to 140
nplus = 1
ier = 0
go to 150
140 npl1 = nplus*2
rn = nplus
if(fpold-fp.gt.acc) npl1 = rn*fpms/(fpold-fp)
nplus = min0(nplus*2,max0(npl1,nplus/2,1))
150 fpold = fp
c compute the sum of squared residuals for each knot interval
c t(j+k) <= u(i) <= t(j+k+1) and store it in fpint(j),j=1,2,...nrint.
fpart = 0.
i = 1
l = k2
new = 0
jj = (mb-1)*idim
do 180 it=mb,me
if(u(it).lt.t(l) .or. l.gt.nk1) go to 160
new = 1
l = l+1
160 term = 0.
l0 = l-k2
do 175 j2=1,idim
fac = 0.
j1 = l0
do 170 j=1,k1
j1 = j1+1
fac = fac+c(j1)*q(it,j)
170 continue
jj = jj+1
term = term+(w(it)*(fac-x(jj)))**2
l0 = l0+n
175 continue
fpart = fpart+term
if(new.eq.0) go to 180
store = term*half
fpint(i) = fpart-store
i = i+1
fpart = store
new = 0
180 continue
fpint(nrint) = fpart
do 190 l=1,nplus
c add a new knot.
call fpknot(u,m,t,n,fpint,nrdata,nrint,nest,1)
c if n=nmax we locate the knots as for interpolation
if(n.eq.nmax) go to 25
c test whether we cannot further increase the number of knots.
if(n.eq.nest) go to 200
190 continue
c restart the computations with the new set of knots.
200 continue
c test whether the least-squares kth degree polynomial curve is a
c solution of our approximation problem.
250 if(ier.eq.(-2)) go to 440
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 2: determination of the smoothing spline curve sp(u). c
c ********************************************************** c
c we have determined the number of knots and their position. c
c we now compute the b-spline coefficients of the smoothing curve c
c sp(u). the observation matrix a is extended by the rows of matrix c
c b expressing that the kth derivative discontinuities of sp(u) at c
c the interior knots t(k+2),...t(n-k-1) must be zero. the corres- c
c ponding weights of these additional rows are set to 1/p. c
c iteratively we then have to determine the value of p such that f(p),c
c the sum of squared residuals be = s. we already know that the least c
c squares kth degree polynomial curve corresponds to p=0, and that c
c the least-squares spline curve corresponds to p=infinity. the c
c iteration process which is proposed here, makes use of rational c
c interpolation. since f(p) is a convex and strictly decreasing c
c function of p, it can be approximated by a rational function c
c r(p) = (u*p+v)/(p+w). three values of p(p1,p2,p3) with correspond- c
c ing values of f(p) (f1=f(p1)-s,f2=f(p2)-s,f3=f(p3)-s) are used c
c to calculate the new value of p such that r(p)=s. convergence is c
c guaranteed by taking f1>0 and f3<0. c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c evaluate the discontinuity jump of the kth derivative of the
c b-splines at the knots t(l),l=k+2,...n-k-1 and store in b.
call fpdisc(t,n,k2,b,nest)
c initial value for p.
p1 = 0.
f1 = fp0-s
p3 = -one
f3 = fpms
p = 0.
do 252 i=1,nn
p = p+a(i,1)
252 continue
rn = nn
p = rn/p
ich1 = 0
ich3 = 0
n8 = n-nmin
c iteration process to find the root of f(p) = s.
do 360 iter=1,maxit
c the rows of matrix b with weight 1/p are rotated into the
c triangularised observation matrix a which is stored in g.
pinv = one/p
do 255 i=1,nc
c(i) = z(i)
255 continue
do 260 i=1,nn
g(i,k2) = 0.
do 260 j=1,k1
g(i,j) = a(i,j)
260 continue
do 300 it=1,n8
c the row of matrix b is rotated into triangle by givens transformation
do 264 i=1,k2
h(i) = b(it,i)*pinv
264 continue
do 268 j=1,idim
xi(j) = 0.
268 continue
c take into account that certain b-spline coefficients must be zero.
if(it.gt.ib) go to 274
j1 = ib-it+2
j2 = 1
do 270 i=j1,k2
h(j2) = h(i)
j2 = j2+1
270 continue
do 272 i=j2,k2
h(i) = 0.
272 continue
274 jj = max0(1,it-ib)
do 290 j=jj,nn
piv = h(1)
c calculate the parameters of the givens transformation.
call fpgivs(piv,g(j,1),cos,sin)
c transformations to right hand side.
j1 = j
do 277 j2=1,idim
call fprota(cos,sin,xi(j2),c(j1))
j1 = j1+n
277 continue
if(j.eq.nn) go to 300
i2 = min0(nn-j,k1)
do 280 i=1,i2
c transformations to left hand side.
i1 = i+1
call fprota(cos,sin,h(i1),g(j,i1))
h(i) = h(i1)
280 continue
h(i2+1) = 0.
290 continue
300 continue
c backward substitution to obtain the b-spline coefficients.
j1 = 1
do 308 j2=1,idim
j3 = j1+ib
call fpback(g,c(j1),nn,k2,c(j3),nest)
if(ib.eq.0) go to 306
j3 = j1
do 304 i=1,ib
c(j3) = 0.
j3 = j3+1
304 continue
306 j1 =j1+n
308 continue
c computation of f(p).
fp = 0.
l = k2
jj = (mb-1)*idim
do 330 it=mb,me
if(u(it).lt.t(l) .or. l.gt.nk1) go to 310
l = l+1
310 l0 = l-k2
term = 0.
do 325 j2=1,idim
fac = 0.
j1 = l0
do 320 j=1,k1
j1 = j1+1
fac = fac+c(j1)*q(it,j)
320 continue
jj = jj+1
term = term+(fac-x(jj))**2
l0 = l0+n
325 continue
fp = fp+term*w(it)**2
330 continue
c test whether the approximation sp(u) is an acceptable solution.
fpms = fp-s
if(abs(fpms).lt.acc) go to 440
c test whether the maximal number of iterations is reached.
if(iter.eq.maxit) go to 400
c carry out one more step of the iteration process.
p2 = p
f2 = fpms
if(ich3.ne.0) go to 340
if((f2-f3).gt.acc) go to 335
c our initial choice of p is too large.
p3 = p2
f3 = f2
p = p*con4
if(p.le.p1) p=p1*con9 + p2*con1
go to 360
335 if(f2.lt.0.) ich3=1
340 if(ich1.ne.0) go to 350
if((f1-f2).gt.acc) go to 345
c our initial choice of p is too small
p1 = p2
f1 = f2
p = p/con4
if(p3.lt.0.) go to 360
if(p.ge.p3) p = p2*con1 + p3*con9
go to 360
345 if(f2.gt.0.) ich1=1
c test whether the iteration process proceeds as theoretically
c expected.
350 if(f2.ge.f1 .or. f2.le.f3) go to 410
c find the new value for p.
p = fprati(p1,f1,p2,f2,p3,f3)
360 continue
c error codes and messages.
400 ier = 3
go to 440
410 ier = 2
go to 440
420 ier = 1
go to 440
430 ier = -1
440 return
end