mountcontrol/mcc/mcc_telemetry.h
2025-08-19 11:52:54 +03:00

309 lines
9.8 KiB
C++

#pragma once
/* MOUNT CONTROL COMPONENTS LIBRARY */
/* IMPLEMENTATION OF TELEMETRY CLASS */
#include "mcc_defaults.h"
namespace mcc
{
static constexpr double mcc_sideral_to_UT1_ratio = 1.002737909350795; // sideral/UT1
enum MccTelemetryErrorCode : int {
ERROR_OK,
ERROR_NULLPTR,
ERROR_COORD_TRANSFORM,
ERROR_PCM_COMP,
ERROR_HARDWARE_GETPOS
};
} // namespace mcc
namespace std
{
template <>
class is_error_code_enum<mcc::MccTelemetryErrorCode> : public true_type
{
};
} // namespace std
namespace mcc
{
/* error category definition */
// error category
struct MccTelemetryCategory : public std::error_category {
MccTelemetryCategory() : std::error_category() {}
const char* name() const noexcept
{
return "ALTITUDE-LIMIT-PZ";
}
std::string message(int ec) const
{
MccTelemetryErrorCode err = static_cast<MccTelemetryErrorCode>(ec);
switch (err) {
case MccTelemetryErrorCode::ERROR_OK:
return "OK";
case MccTelemetryErrorCode::ERROR_NULLPTR:
return "nullptr input argument";
case MccTelemetryErrorCode::ERROR_COORD_TRANSFORM:
return "coordinate transformation error";
case MccTelemetryErrorCode::ERROR_PCM_COMP:
return "PCM computation error";
case MccTelemetryErrorCode::ERROR_HARDWARE_GETPOS:
return "cannot get hardware position";
default:
return "UNKNOWN";
}
}
static const MccTelemetryCategory& get()
{
static const MccTelemetryCategory constInst;
return constInst;
}
};
inline std::error_code make_error_code(MccTelemetryErrorCode ec)
{
return std::error_code(static_cast<int>(ec), MccTelemetryCategory::get());
}
/* TELEMETRY UPDATE POLICY */
enum class MccTelemetryUpdatePolicy : int { TEMETRY_UPDATE_INNER, TEMETRY_UPDATE_EXTERNAL };
template <MccTelemetryUpdatePolicy UPDATE_POLICY = MccTelemetryUpdatePolicy::TEMETRY_UPDATE_INNER>
class MccTelemetry : public mcc_telemetry_interface_t<std::error_code>
{
public:
static constexpr MccTelemetryUpdatePolicy updatePolicy = UPDATE_POLICY;
typedef std::error_code error_t;
MccTelemetry(mcc_ccte_c auto* ccte, mcc_PCM_c auto* pcm, mcc_hardware_c auto* hardware) : _data()
{
_data.target.pair_kind = MccCoordPairKind::COORDS_KIND_RADEC_ICRS;
using ccte_t = std::remove_cvref_t<decltype(*ccte)>;
using pcm_t = std::remove_cvref_t<decltype(*pcm)>;
using hardware_t = std::remove_cvref_t<decltype(*hardware)>;
_updateTargetFunc = [ccte, this]() {
//
// ICRS coordinates of the taget must be already set
//
_data.target.pair_kind = MccCoordPairKind::COORDS_KIND_RADEC_ICRS;
_data.target.X = _data.target.RA_ICRS;
_data.target.Y = _data.target.DEC_ICRS;
// update apparent cordinates
auto ret = ccte->transformCoordinates(_data.target, &_data.target);
return mcc_deduce_error<error_t>(ret, MccTelemetryErrorCode::ERROR_COORD_TRANSFORM);
};
_updateFunc = [ccte, pcm, hardware, this](MccTelemetryData* data) {
// first, update mount quantities
typename hardware_t::axes_pos_t hw_pos;
auto hw_err = hardware->getPos(&hw_pos);
if (hw_err) {
return mcc_deduce_error(hw_err, MccTelemetryErrorCode::ERROR_HARDWARE_GETPOS);
}
double eo;
data->time_point =
std::chrono::time_point_cast<typename decltype(data->time_point)::duration>(hw_pos.time_point);
auto ccte_err = ccte->timepointToJulday(data->time_point, &data->JD);
if (!ccte_err) {
ccte_err = ccte->juldayToAppSideral(data->JD, &data->LST, true);
if (!ccte_err) {
ccte_err = ccte->equationOrigins(data->JD, &eo);
}
}
if (ccte_err) {
return mcc_deduce_error(ccte_err, MccTelemetryErrorCode::ERROR_COORD_TRANSFORM);
}
data->speedX = (double)hw_pos.speedX;
data->speedY = (double)hw_pos.speedY;
struct {
double dx, dy;
} pcm_res;
auto pcm_err = pcm->computePCM(data, &pcm_res);
if (pcm_err) {
return mcc_deduce_error(pcm_err, MccTelemetryErrorCode::ERROR_PCM_COMP);
}
data->pcmX = pcm_res.dx;
data->pcmY = pcm_res.dy;
MccCelestialPoint pt{.pair_kind = MccCoordPairKind::COORDS_KIND_AZALT, .time_point = data->time_point};
if constexpr (mccIsEquatorialMount(pcm_t::mountType)) {
data->HA = (double)hw_pos.X + pcm_res.dx;
data->DEC_APP = (double)hw_pos.Y + pcm_res.dy;
data->RA_APP = (double)data->LST - (double)data->HA + eo;
data->X = data->HA;
data->Y = data->DEC_APP;
data->pair_kind = MccCoordPairKind::COORDS_KIND_HADEC_APP;
ccte_err = ccte->transformCoordinates(*data, &pt);
if (!ccte_err) {
data->AZ = pt.X;
data->ALT = pt.Y;
data->ZD = std::numbers::pi / 2.0 - data->ALT;
}
} else if constexpr (mccIsAltAzMount(pcm_t::mountType)) {
data->AZ = (double)hw_pos.X + pcm_res.dx;
data->ALT = (double)hw_pos.Y + pcm_res.dy;
data->ZD = std::numbers::pi / 2.0 - data->ALT;
data->X = data->AZ;
data->Y = data->ALT;
data->pair_kind = MccCoordPairKind::COORDS_KIND_AZALT;
pt.pair_kind = MccCoordPairKind::COORDS_KIND_HADEC_APP;
ccte_err = ccte->transformCoordinates(*data, &pt);
if (!ccte) {
data->HA = pt.X;
data->DEC_APP = pt.Y;
data->RA_APP = (double)data->LST - (double)data->HA + eo;
}
} else {
static_assert(false, "UNKNOWN MOUNT TYPE!");
}
if (!ccte_err) {
data->pair_kind = MccCoordPairKind::COORDS_KIND_AZZD;
data->X = data->AZ;
data->Y = data->ZD;
ccte_err = ccte->refractionCorrection(data, &data->refCorr);
if (!ccte_err) {
// hardware encoders coordinates
data->X = (double)hw_pos.X;
data->Y = (double)hw_pos.Y;
// update target (assuming target ICRS coordinates are already set)
data->target.time_point =
std::chrono::time_point_cast<typename decltype(data->target.time_point)::duration>(
data->time_point);
data->target.pair_kind = MccCoordPairKind::COORDS_KIND_RADEC_ICRS;
data->target.X = data->target.RA_ICRS;
data->target.Y = data->target.DEC_ICRS;
ccte_err = ccte->transformCoordinates(data->target, &data->target);
}
}
if (ccte_err) {
return mcc_deduce_error(ccte_err, MccTelemetryErrorCode::ERROR_COORD_TRANSFORM);
}
if constexpr (mccIsEquatorialMount(pcm_t::mountType)) {
data->pair_kind = MccCoordPairKind::COORDS_KIND_HADEC_APP;
} else if constexpr (mccIsAltAzMount(pcm_t::mountType)) {
data->pair_kind = MccCoordPairKind::COORDS_KIND_AZALT;
} else {
static_assert(false, "UNKNOWN MOUNT TYPE!");
}
return MccTelemetryErrorCode::ERROR_OK;
};
_setTargetFunc = [ccte, this](MccCelestialPoint const& pt) {
// in the case of apparent input coordinates
// one must ensure the same time points
_data.target.pair_kind = MccCoordPairKind::COORDS_KIND_RADEC_ICRS;
_data.target.time_point =
std::chrono::time_point_cast<typename decltype(_data.target.time_point)::duration>(pt.time_point);
auto ret = ccte->transformCoordinates(pt, &_data.target);
if (!ret) {
if (pt.pair_kind == MccCoordPairKind::COORDS_KIND_RADEC_ICRS) {
_data.target.RA_ICRS = _data.target.X;
_data.target.DEC_ICRS = _data.target.Y;
// update apparent coordinates
ret = _updateTargetFunc();
} else { // apparent coordinates were computed above
// compute ICRS coordinates
MccCelestialPoint cpt{.pair_kind = MccCoordPairKind::COORDS_KIND_RADEC_ICRS};
ret = ccte->transformCoordinates(pt, &cpt);
_data.target.RA_ICRS = cpt.X;
_data.target.DEC_ICRS = cpt.Y;
}
}
return mcc_deduce_error<error_t>(ret, MccTelemetryErrorCode::ERROR_COORD_TRANSFORM);
};
}
virtual ~MccTelemetry() = default;
error_t telemetryData(mcc_telemetry_data_c auto* tdata)
{
if (tdata == nullptr) {
return MccTelemetryErrorCode::ERROR_NULLPTR;
}
error_t ret = _updateFunc(&_data);
if (!ret) {
mcc_copy_telemetry_data(_data, tdata);
}
return ret;
}
error_t setPointingTarget(mcc_celestial_point_c auto pt)
{
// return
}
protected:
MccTelemetryData _data;
std ::function<error_t()> _updateTargetFunc{};
std::function<error_t(MccTelemetryData*)> _updateFunc{};
std::function<error_t(MccCelestialPoint const&)> _setTargetFunc{};
};
} // namespace mcc