mountcontrol/cxx/mcc_slew_model.h
2025-07-22 18:13:18 +03:00

503 lines
18 KiB
C++

#pragma once
/* MOUNT CONTROL COMPONENTS LIBRARY */
/* A VERY SIMPLE SLEW MODEL GENERIC IMPLEMENTATION */
#include "mcc_mount_concepts.h"
namespace mcc
{
enum class MccSimpleSlewModelErrorCode : int {
ERROR_OK,
ERROR_IN_PROHIBITED_ZONE,
ERROR_ASTROM_COMP,
ERROR_TELEMETRY_DATA,
ERROR_PEC_COMP,
ERROR_HARDWARE_SETPOS,
ERROR_SLEW_TIMEOUT
};
} // namespace mcc
namespace std
{
template <>
class is_error_code_enum<mcc::MccSimpleSlewModelErrorCode> : public true_type
{
};
} // namespace std
namespace mcc
{
/* error category definition */
// error category
struct MccSimpleSlewModelCategory : public std::error_category {
MccSimpleSlewModelCategory() : std::error_category() {}
const char* name() const noexcept
{
return "ADC_GENERIC_DEVICE";
}
std::string message(int ec) const
{
MccSimpleSlewModelErrorCode err = static_cast<MccSimpleSlewModelErrorCode>(ec);
switch (err) {
case MccSimpleSlewModelErrorCode::ERROR_OK:
return "OK";
case MccSimpleSlewModelErrorCode::ERROR_IN_PROHIBITED_ZONE:
return "slew model: position is in prohibited zone";
case MccSimpleSlewModelErrorCode::ERROR_ASTROM_COMP:
return "slew model: cannot perform astrometrical computations";
case MccSimpleSlewModelErrorCode::ERROR_TELEMETRY_DATA:
return "slew model: cannot get telemetry data";
case MccSimpleSlewModelErrorCode::ERROR_PEC_COMP:
return "slew model: cannot compute PEC corrections";
case MccSimpleSlewModelErrorCode::ERROR_HARDWARE_SETPOS:
return "slew model: cannot set position";
default:
return "UNKNOWN";
}
}
static const MccSimpleSlewModelCategory& get()
{
static const MccSimpleSlewModelCategory constInst;
return constInst;
}
};
inline std::error_code make_error_code(MccSimpleSlewModelErrorCode ec)
{
return std::error_code(static_cast<int>(ec), MccSimpleSlewModelCategory::get());
}
/*
* WARNING: it is assumed that coordinates are in radians!
* but this fact is only used if slew coordinate pair are given as
* [azimuth, zenithal distance] (see sources code below)
*/
template <traits::mcc_logger_c LoggerT = MccNullLogger>
class MccSimpleSlewModel : public LoggerT
{
using LoggerT::logDebug;
using LoggerT::logError;
using LoggerT::logInfo;
using LoggerT::logMessage;
using LoggerT::logWarn;
public:
typedef std::error_code error_t;
struct slew_params_t {
typedef mcc::MccAngle coord_t;
mcc::MccCoordPairKind coordPairKind{mcc::MccCoordPairKind::COORDS_KIND_HADEC_APP};
coord_t x{0.0};
coord_t y{0.0};
// if <= 0 then hardware must assume default rate
coord_t xrate{-1};
coord_t yrate{-1};
bool stop{false};
};
struct context_t {
// double eps{0.01};
// size_t maxIter{5};
slew_params_t::coord_t guidingRateX;
slew_params_t::coord_t guidingRateY;
slew_params_t::coord_t guidingRateEps;
size_t maxRateCycles{5};
std::chrono::seconds timeout{300};
};
template <traits::mcc_mount_controls_c MOUNT_CONTROLS_T, typename... LoggerCtorArgTs>
MccSimpleSlewModel(MOUNT_CONTROLS_T& mount_controls, context_t context, LoggerCtorArgTs&&... ctor_args)
requires(!std::same_as<LoggerT, MccNullLogger>)
: LoggerT(std::forward<LoggerCtorArgTs>(ctor_args)...)
{
logDebug(std::format("Create 'MccSimpleSlewModel' class instance ({})", (void*)this));
init(mount_controls, std::move(context));
}
template <traits::mcc_mount_controls_c MOUNT_CONTROLS_T>
MccSimpleSlewModel(MOUNT_CONTROLS_T& mount_controls, context_t context)
requires(std::same_as<LoggerT, MccNullLogger>)
{
init(mount_controls, std::move(context));
}
virtual ~MccSimpleSlewModel()
{
logDebug(std::format("Delete 'MccSimpleSlewModel' class instance ({})", (void*)this));
}
error_t slew(slew_params_t pars)
{
error_t res_err = _slewFunc(std::move(pars));
return res_err;
}
protected:
std::function<error_t(const slew_params_t&)> _slewFunc{};
void init(auto& mount_controls, context_t context)
{
// deduce controls types
using astrom_engine_t = decltype(mount_controls.astrometryEngine);
using hardware_t = decltype(mount_controls.hardware);
using pec_t = decltype(mount_controls.PEC);
using telemetry_t = decltype(mount_controls.telemetry);
using tpl_pz_t = decltype(mount_controls.prohibitedZones);
static constexpr size_t Nzones = std::tuple_size_v<tpl_pz_t>;
const auto p_mount_controls = &mount_controls;
// prohibited zones related lambdas
auto check_zones = [p_mount_controls]<size_t... Is>(std::index_sequence<Is...>) {
// std::array<std::error_code, sizeof...(Is)> result{};
error_t ret;
(
[&ret]() {
if constexpr (Is > 0) {
if (ret) {
return;
}
}
typename telemetry_t::mount_telemetry_data_t tdata;
auto tel_err = p_mount_controls->telemetry.data(tdata);
if (tel_err) {
if constexpr (std::same_as<decltype(tel_err), error_t>) {
ret = tel_err;
} else {
ret = MccSimpleSlewModelErrorCode::ERROR_TELEMETRY_DATA;
}
} else {
ret = std::get<Is>(p_mount_controls->prohibitedZones).inZone(tdata)
? MccSimpleSlewModelErrorCode::ERROR_IN_PROHIBITED_ZONE
: MccSimpleSlewModelErrorCode::ERROR_OK;
}
}(),
...);
return ret;
};
_slewFunc = [p_mount_controls, context = std::move(context), check_zones](this auto&& self,
slew_params_t slew_pars) {
auto& astrom_engine = p_mount_controls->astrometryEngine;
auto& hardware = p_mount_controls->hardware;
auto& pec = p_mount_controls->PEC;
auto& telemetry = p_mount_controls->telemetry;
using coord_t = typename astrom_engine_t::coord_t;
using jd_t = typename astrom_engine_t::juldate_t;
typename hardware_t::axes_pos_t ax_pos;
error_t res_err;
typename astrom_engine_t::error_t ast_err;
typename pec_t::error_t pec_err;
typename telemetry_t::error_t t_err;
typename telemetry_t::mount_telemetry_data_t t_data;
if (slew_pars.coordPairKind == mcc::MccCoordPairKind::COORDS_KIND_XY) {
// trivial case (the pair is interpretated as raw encoder coordinates)
ax_pos.x = slew_pars.x;
ax_pos.y = slew_pars.y;
ax_pos.xrate = slew_pars.xrate;
ax_pos.yrate = slew_pars.yrate;
} else if (slew_pars.coordPairKind ==
mcc::MccCoordPairKind::COORDS_KIND_RADEC_ICRS) { // catalog coordinates
jd_t jd;
coord_t ra_app, dec_app, ha, az, alt;
typename astrom_engine_t::eo_t eo;
logDebug("Input slew coordinates are ICRS RA-DEC: convert it to apparent ...");
ast_err = astrom_engine->greg2jul(std::chrono::system_clock::now(), jd);
if (!ast_err) {
ast_err = astrom_engine->icrs2obs(slew_pars.x, slew_pars.y, jd, ra_app, dec_app, ha, az, alt, eo);
if (!ast_err) {
if constexpr (mccIsEquatorialMount(pec_t::mountType)) {
slew_pars.coordPairKind = mcc::MccCoordPairKind::COORDS_KIND_HADEC_APP;
slew_pars.x = ha;
slew_pars.y = dec_app;
res_err = self(std::move(slew_pars));
} else if constexpr (mccIsAltAzMount(pec_t::mountType)) {
slew_pars.coordPairKind = mcc::MccCoordPairKind::COORDS_KIND_AZALT;
slew_pars.x = az;
slew_pars.y = alt;
res_err = self(std::move(slew_pars));
} else {
static_assert(false, "UNKNOWN MOUNT TYPE!");
}
}
}
} else if (slew_pars.coordPairKind == mcc::MccCoordPairKind::COORDS_KIND_RADEC_APP) { // apparent
jd_t jd;
typename astrom_engine_t::eo_t eo;
logDebug("Input slew coordinates are apparent RA-DEC: convert it to apparent HA-DEC ...");
ast_err = astrom_engine->greg2jul(std::chrono::system_clock::now(), jd);
if (!ast_err) {
typename astrom_engine_t::sideral_time_t lst;
ast_err = astrom_engine->apparentSiderTime(jd, lst, true);
if (!ast_err) {
ast_err = astrom_engine->eqOrigins(jd, eo);
if (!ast_err) {
slew_pars.coordPairKind = mcc::MccCoordPairKind::COORDS_KIND_HADEC_APP;
slew_pars.x = lst - slew_pars.x + eo; // HA = LST - RA_APP + EO
res_err = self(std::move(slew_pars));
}
}
}
} else if (slew_pars.coordPairKind == mcc::MccCoordPairKind::COORDS_KIND_HADEC_APP) { // apparent
if constexpr (mccIsEquatorialMount(pec_t::mountType)) { // compute encoder coordinates
logDebug("Input slew coordinates are apparent HA-DEC: convert it to hardware encoder ones ...");
coord_t eps = 1.0 / 3600.0 * std::numbers::pi / 180.0;
typename pec_t::pec_result_t pec_res;
// pec_err = pec->reverseCompute(slew_pars.x, slew_pars.y, pec_res, context.eps, context.maxIter);
pec_err = pec->compute(slew_pars.x, slew_pars.y, pec_res);
if (!pec_err) {
slew_pars.coordPairKind = mcc::MccCoordPairKind::COORDS_KIND_XY;
slew_pars.x -= pec_res.dx;
slew_pars.y -= pec_res.dy;
res_err = self(std::move(slew_pars));
}
} else if constexpr (mccIsAltAzMount(pec_t::mountType)) {
coord_t az, alt;
logDebug("Input slew coordinates are apparent HA-DEC: convert it to AZ-ALT ...");
ast_err = astrom_engine->hadec2azalt(slew_pars.x, slew_pars.y, az, alt);
if (!ast_err) {
slew_pars.coordPairKind = mcc::MccCoordPairKind::COORDS_KIND_AZALT;
slew_pars.x = az;
slew_pars.y = alt;
res_err = self(std::move(slew_pars));
}
} else {
static_assert(false, "UNKNOWN MOUNT TYPE!");
}
} else if (slew_pars.coordPairKind == mcc::MccCoordPairKind::COORDS_KIND_AZALT) {
if constexpr (mccIsEquatorialMount(pec_t::mountType)) {
coord_t ha, dec;
logDebug("Input slew coordinates are AZ-ALT: convert it to HA-DEC ...");
ast_err = astrom_engine->azalt2hadec(slew_pars.x, slew_pars.y, ha, dec);
if (!ast_err) {
slew_pars.coordPairKind = mcc::MccCoordPairKind::COORDS_KIND_HADEC_APP;
slew_pars.x = ha;
slew_pars.y = dec;
res_err = self(std::move(slew_pars));
}
} else if constexpr (mccIsAltAzMount(pec_t::mountType)) { // compute encoder coordinates
coord_t eps = 1.0 / 3600.0 * std::numbers::pi / 180.0;
logDebug("Input slew coordinates are AZ-ALT: convert it to hardware encoder ones ...");
typename pec_t::pec_result_t pec_res;
// pec_err = pec->reverseCompute(slew_pars.x, slew_pars.y, pec_res, context.eps, context.maxIter);
pec_err = pec->compute(slew_pars.x, slew_pars.y, pec_res);
if (!pec_err) {
slew_pars.coordPairKind = mcc::MccCoordPairKind::COORDS_KIND_XY;
slew_pars.x -= pec_res.dx;
slew_pars.y -= pec_res.dy;
res_err = self(std::move(slew_pars));
}
} else {
static_assert(false, "UNKNOWN MOUNT TYPE!");
}
} else if (slew_pars.coordPairKind == mcc::MccCoordPairKind::COORDS_KIND_AZZD) {
//
// WARNING: it is assumed that coordinates are in radians!
//
logDebug("Input slew coordinates are AZ-ZD: convert it to AZ-ALT ...");
slew_pars.y = std::numbers::pi / 2.0 - slew_pars.y;
res_err = self(std::move(slew_pars));
}
if (res_err) {
return res_err;
}
if (pec_err) {
if constexpr (std::same_as<decltype(pec_err), error_t>) {
logError(std::format("An PEC error occured: code = {} ({})", pec_err.value(), pec_err.message()));
return pec_err;
} else {
if constexpr (traits::mcc_formattable<decltype(pec_err)>) {
logError(std::format("An PEC error occured: code = {}", pec_err));
}
return MccSimpleSlewModelErrorCode::ERROR_PEC_COMP;
}
}
if (ast_err) {
if constexpr (std::same_as<decltype(ast_err), error_t>) {
logError(std::format("An error occured while performing astrometry computations: code = {} ({})",
ast_err.value(), ast_err.message()));
return ast_err;
} else {
if constexpr (traits::mcc_formattable<decltype(ast_err)>) {
logError(std::format("An error occured while performing astrometry computations: code = {}",
ast_err));
}
return MccSimpleSlewModelErrorCode::ERROR_ASTROM_COMP;
}
}
// move mount (it is assumed this is asynchronous operation!!!)
typename hardware_t::error_t err = hardware->setPos(ax_pos);
if (err) {
if constexpr (std::same_as<decltype(err), error_t>) {
logError(std::format("An hardware error occured: code = {} ({})", err.value(), err.message()));
return err;
} else {
if constexpr (traits::mcc_formattable<decltype(err)>) {
logError(std::format("An hardware error occured: code = {}", err));
}
return MccSimpleSlewModelErrorCode::ERROR_HARDWARE_SETPOS;
}
}
size_t i_iter = 0;
context.guidingRateEps *= context.guidingRateEps;
typename telemetry_t::mount_telemetry_data_t::time_point_t prev_time_point{};
typename telemetry_t::mount_telemetry_data_t::coord_t xrate, yrate, mount_rate2;
auto start_poll_tm = std::chrono::high_resolution_clock::now();
while (true) {
// check prohibited zones
res_err = check_zones(std::make_index_sequence<Nzones>{});
if (res_err) {
hardware.stop();
return res_err;
}
// it is assumed here that telemetry data is in actual state!
t_err = telemetry.data(t_data);
if (t_err) {
hardware.stop();
if constexpr (std::same_as<decltype(t_err), error_t>) {
logError(
std::format("An telemetry error occured: code = {} ({})", t_err.value(), t_err.message()));
return t_err;
} else {
if constexpr (traits::mcc_formattable<decltype(t_err)>) {
logError(std::format("An telemetry error occured: code = {}", t_err));
}
return MccSimpleSlewModelErrorCode::ERROR_TELEMETRY_DATA;
}
}
if (prev_time_point == t_data.time_point) {
continue;
}
if (slew_pars.stop) { // slew and stop, so mount moving rate must be 0 at the end
mount_rate2 = t_data.mntRateX * t_data.mntRateX + t_data.mntRateY * t_data.mntRateY;
if (utils::isEqual((double)mount_rate2, 0.0)) {
++i_iter;
} else {
i_iter = 0;
}
} else { // slew and guiding, so mount rate must be near guiding rate at the end
xrate = t_data.mntRateX - context.guidingRateX;
yrate = t_data.mntRateY - context.guidingRateY;
mount_rate2 = xrate * xrate + yrate * yrate;
if (mount_rate2 <= context.guidingRateEps) {
++i_iter;
} else {
i_iter = 0;
}
}
if (i_iter >= context.maxRateCycles) {
break;
}
prev_time_point = t_data.time_point;
if ((std::chrono::high_resolution_clock::now() - start_poll_tm) > context.timeout) {
logError("Waiting time for completion of slewing expired!");
return MccSimpleSlewModelErrorCode::ERROR_SLEW_TIMEOUT;
}
}
return MccSimpleSlewModelErrorCode::ERROR_OK;
};
}
};
// static_assert(traits::mcc_slew_model_c<>);
} // namespace mcc