Timur A. Fatkhullin 5279d1c41a add FITPACK Fortran library
start developing of FITPACK C++ bindings
mount_server.cpp: fix compilation error with GCC15
2025-05-05 17:24:21 +03:00

140 lines
4.2 KiB
Fortran

recursive subroutine splev(t,n,c,nc,k,x,y,m,e,ier)
c subroutine splev evaluates in a number of points x(i),i=1,2,...,m
c a spline s(x) of degree k, given in its b-spline representation.
c
c calling sequence:
c call splev(t,n,c,nc,k,x,y,m,e,ier)
c
c input parameters:
c t : array,length n, which contains the position of the knots.
c n : integer, giving the total number of knots of s(x).
c c : array,length nc, containing the b-spline coefficients.
c the length of the array, nc >= n - k -1.
c further coefficients are ignored.
c k : integer, giving the degree of s(x).
c x : array,length m, which contains the points where s(x) must
c be evaluated.
c m : integer, giving the number of points where s(x) must be
c evaluated.
c e : integer, if 0 the spline is extrapolated from the end
c spans for points not in the support, if 1 the spline
c evaluates to zero for those points, if 2 ier is set to
c 1 and the subroutine returns, and if 3 the spline evaluates
c to the value of the nearest boundary point.
c
c output parameter:
c y : array,length m, giving the value of s(x) at the different
c points.
c ier : error flag
c ier = 0 : normal return
c ier = 1 : argument out of bounds and e == 2
c ier =10 : invalid input data (see restrictions)
c
c restrictions:
c m >= 1
c-- t(k+1) <= x(i) <= x(i+1) <= t(n-k) , i=1,2,...,m-1.
c
c other subroutines required: fpbspl.
c
c references :
c de boor c : on calculating with b-splines, j. approximation theory
c 6 (1972) 50-62.
c cox m.g. : the numerical evaluation of b-splines, j. inst. maths
c applics 10 (1972) 134-149.
c dierckx p. : curve and surface fitting with splines, monographs on
c numerical analysis, oxford university press, 1993.
c
c author :
c p.dierckx
c dept. computer science, k.u.leuven
c celestijnenlaan 200a, b-3001 heverlee, belgium.
c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
c
c latest update : march 1987
c
c++ pearu: 11 aug 2003
c++ - disabled cliping x values to interval [min(t),max(t)]
c++ - removed the restriction of the orderness of x values
c++ - fixed initialization of sp to double precision value
c
c ..scalar arguments..
integer n, k, m, e, ier
c ..array arguments..
real*8 t(n), c(nc), x(m), y(m)
c ..local scalars..
integer i, j, k1, l, ll, l1, nk1
c++..
integer k2
c..++
real*8 arg, sp, tb, te
c ..local array..
real*8 h(20)
c ..
c before starting computations a data check is made. if the input data
c are invalid control is immediately repassed to the calling program.
ier = 10
c-- if(m-1) 100,30,10
c++..
if (m .lt. 1) go to 100
c..++
c-- 10 do 20 i=2,m
c-- if(x(i).lt.x(i-1)) go to 100
c-- 20 continue
ier = 0
c fetch tb and te, the boundaries of the approximation interval.
k1 = k + 1
c++..
k2 = k1 + 1
c..++
nk1 = n - k1
tb = t(k1)
te = t(nk1 + 1)
l = k1
l1 = l + 1
c main loop for the different points.
do 80 i = 1, m
c fetch a new x-value arg.
arg = x(i)
c check if arg is in the support
if (arg .lt. tb .or. arg .gt. te) then
if (e .eq. 0) then
goto 35
else if (e .eq. 1) then
y(i) = 0
goto 80
else if (e .eq. 2) then
ier = 1
goto 100
else if (e .eq. 3) then
if (arg .lt. tb) then
arg = tb
else
arg = te
endif
endif
endif
c search for knot interval t(l) <= arg < t(l+1)
c++..
35 if (arg .ge. t(l) .or. l1 .eq. k2) go to 40
l1 = l
l = l - 1
go to 35
c..++
40 if(arg .lt. t(l1) .or. l .eq. nk1) go to 50
l = l1
l1 = l + 1
go to 40
c evaluate the non-zero b-splines at arg.
50 call fpbspl(t, n, k, arg, l, h)
c find the value of s(x) at x=arg.
sp = 0.0d0
ll = l - k1
do 60 j = 1, k1
ll = ll + 1
sp = sp + c(ll)*h(j)
60 continue
y(i) = sp
80 continue
100 return
end