start developing of FITPACK C++ bindings mount_server.cpp: fix compilation error with GCC15
160 lines
5.0 KiB
Fortran
160 lines
5.0 KiB
Fortran
recursive subroutine pardeu(tx,nx,ty,ny,c,kx,ky,nux,nuy,x,y,z,m,
|
|
* wrk,lwrk,iwrk,kwrk,ier)
|
|
implicit none
|
|
c subroutine pardeu evaluates on a set of points (x(i),y(i)),i=1,...,m
|
|
c the partial derivative ( order nux,nuy) of a bivariate spline
|
|
c s(x,y) of degrees kx and ky, given in the b-spline representation.
|
|
c
|
|
c calling sequence:
|
|
c call parder(tx,nx,ty,ny,c,kx,ky,nux,nuy,x,mx,y,my,z,wrk,lwrk,
|
|
c * iwrk,kwrk,ier)
|
|
c
|
|
c input parameters:
|
|
c tx : real array, length nx, which contains the position of the
|
|
c knots in the x-direction.
|
|
c nx : integer, giving the total number of knots in the x-direction
|
|
c ty : real array, length ny, which contains the position of the
|
|
c knots in the y-direction.
|
|
c ny : integer, giving the total number of knots in the y-direction
|
|
c c : real array, length (nx-kx-1)*(ny-ky-1), which contains the
|
|
c b-spline coefficients.
|
|
c kx,ky : integer values, giving the degrees of the spline.
|
|
c nux : integer values, specifying the order of the partial
|
|
c nuy derivative. 0<=nux<kx, 0<=nuy<ky.
|
|
c kx,ky : integer values, giving the degrees of the spline.
|
|
c x : real array of dimension (mx).
|
|
c y : real array of dimension (my).
|
|
c m : on entry m must specify the number points. m >= 1.
|
|
c wrk : real array of dimension lwrk. used as workspace.
|
|
c lwrk : integer, specifying the dimension of wrk.
|
|
c lwrk >= mx*(kx+1-nux)+my*(ky+1-nuy)+(nx-kx-1)*(ny-ky-1)
|
|
c iwrk : integer array of dimension kwrk. used as workspace.
|
|
c kwrk : integer, specifying the dimension of iwrk. kwrk >= mx+my.
|
|
c
|
|
c output parameters:
|
|
c z : real array of dimension (m).
|
|
c on successful exit z(i) contains the value of the
|
|
c specified partial derivative of s(x,y) at the point
|
|
c (x(i),y(i)),i=1,...,m.
|
|
c ier : integer error flag
|
|
c ier=0 : normal return
|
|
c ier=10: invalid input data (see restrictions)
|
|
c
|
|
c restrictions:
|
|
c lwrk>=m*(kx+1-nux)+m*(ky+1-nuy)+(nx-kx-1)*(ny-ky-1),
|
|
c
|
|
c other subroutines required:
|
|
c fpbisp,fpbspl
|
|
c
|
|
c references :
|
|
c de boor c : on calculating with b-splines, j. approximation theory
|
|
c 6 (1972) 50-62.
|
|
c dierckx p. : curve and surface fitting with splines, monographs on
|
|
c numerical analysis, oxford university press, 1993.
|
|
c
|
|
c author :
|
|
c p.dierckx
|
|
c dept. computer science, k.u.leuven
|
|
c celestijnenlaan 200a, b-3001 heverlee, belgium.
|
|
c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
|
|
c
|
|
c latest update : march 1989
|
|
c
|
|
c ..scalar arguments..
|
|
integer nx,ny,kx,ky,m,lwrk,kwrk,ier,nux,nuy
|
|
c ..array arguments..
|
|
integer iwrk(kwrk)
|
|
real*8 tx(nx),ty(ny),c((nx-kx-1)*(ny-ky-1)),x(m),y(m),z(m),
|
|
* wrk(lwrk)
|
|
c ..local scalars..
|
|
integer i,iwx,iwy,j,kkx,kky,kx1,ky1,lx,ly,lwest,l1,l2,mm,m0,m1,
|
|
* nc,nkx1,nky1,nxx,nyy
|
|
real*8 ak,fac
|
|
c ..
|
|
c before starting computations a data check is made. if the input data
|
|
c are invalid control is immediately repassed to the calling program.
|
|
ier = 10
|
|
kx1 = kx+1
|
|
ky1 = ky+1
|
|
nkx1 = nx-kx1
|
|
nky1 = ny-ky1
|
|
nc = nkx1*nky1
|
|
if(nux.lt.0 .or. nux.ge.kx) go to 400
|
|
if(nuy.lt.0 .or. nuy.ge.ky) go to 400
|
|
lwest = nc +(kx1-nux)*m+(ky1-nuy)*m
|
|
if(lwrk.lt.lwest) go to 400
|
|
if(kwrk.lt.(m+m)) go to 400
|
|
if (m.lt.1) go to 400
|
|
ier = 0
|
|
nxx = nkx1
|
|
nyy = nky1
|
|
kkx = kx
|
|
kky = ky
|
|
c the partial derivative of order (nux,nuy) of a bivariate spline of
|
|
c degrees kx,ky is a bivariate spline of degrees kx-nux,ky-nuy.
|
|
c we calculate the b-spline coefficients of this spline
|
|
do 70 i=1,nc
|
|
wrk(i) = c(i)
|
|
70 continue
|
|
if(nux.eq.0) go to 200
|
|
lx = 1
|
|
do 100 j=1,nux
|
|
ak = kkx
|
|
nxx = nxx-1
|
|
l1 = lx
|
|
m0 = 1
|
|
do 90 i=1,nxx
|
|
l1 = l1+1
|
|
l2 = l1+kkx
|
|
fac = tx(l2)-tx(l1)
|
|
if(fac.le.0.) go to 90
|
|
do 80 mm=1,nyy
|
|
m1 = m0+nyy
|
|
wrk(m0) = (wrk(m1)-wrk(m0))*ak/fac
|
|
m0 = m0+1
|
|
80 continue
|
|
90 continue
|
|
lx = lx+1
|
|
kkx = kkx-1
|
|
100 continue
|
|
200 if(nuy.eq.0) go to 300
|
|
ly = 1
|
|
do 230 j=1,nuy
|
|
ak = kky
|
|
nyy = nyy-1
|
|
l1 = ly
|
|
do 220 i=1,nyy
|
|
l1 = l1+1
|
|
l2 = l1+kky
|
|
fac = ty(l2)-ty(l1)
|
|
if(fac.le.0.) go to 220
|
|
m0 = i
|
|
do 210 mm=1,nxx
|
|
m1 = m0+1
|
|
wrk(m0) = (wrk(m1)-wrk(m0))*ak/fac
|
|
m0 = m0+nky1
|
|
210 continue
|
|
220 continue
|
|
ly = ly+1
|
|
kky = kky-1
|
|
230 continue
|
|
m0 = nyy
|
|
m1 = nky1
|
|
do 250 mm=2,nxx
|
|
do 240 i=1,nyy
|
|
m0 = m0+1
|
|
m1 = m1+1
|
|
wrk(m0) = wrk(m1)
|
|
240 continue
|
|
m1 = m1+nuy
|
|
250 continue
|
|
c we partition the working space and evaluate the partial derivative
|
|
300 iwx = 1+nxx*nyy
|
|
iwy = iwx+m*(kx1-nux)
|
|
do 390 i=1,m
|
|
call fpbisp(tx(nux+1),nx-2*nux,ty(nuy+1),ny-2*nuy,wrk,kkx,kky,
|
|
* x(i),1,y(i),1,z(i),wrk(iwx),wrk(iwy),iwrk(1),iwrk(2))
|
|
390 continue
|
|
400 return
|
|
end
|