Timur A. Fatkhullin 5279d1c41a add FITPACK Fortran library
start developing of FITPACK C++ bindings
mount_server.cpp: fix compilation error with GCC15
2025-05-05 17:24:21 +03:00

766 lines
25 KiB
Fortran

recursive subroutine fpsphe(iopt,m,teta,phi,r,w,s,ntest,npest,
* eta,tol,maxit,
* ib1,ib3,nc,ncc,intest,nrest,nt,tt,np,tp,c,fp,sup,fpint,coord,f,
* ff,row,coco,cosi,a,q,bt,bp,spt,spp,h,index,nummer,wrk,lwrk,ier)
implicit none
c ..
c ..scalar arguments..
integer iopt,m,ntest,npest,maxit,ib1,ib3,nc,ncc,intest,nrest,
* nt,np,lwrk,ier
real*8 s,eta,tol,fp,sup
c ..array arguments..
real*8 teta(m),phi(m),r(m),w(m),tt(ntest),tp(npest),c(nc),
* fpint(intest),coord(intest),f(ncc),ff(nc),row(npest),coco(npest),
*
* cosi(npest),a(ncc,ib1),q(ncc,ib3),bt(ntest,5),bp(npest,5),
* spt(m,4),spp(m,4),h(ib3),wrk(lwrk)
integer index(nrest),nummer(m)
c ..local scalars..
real*8 aa,acc,arg,cn,co,c1,dmax,d1,d2,eps,facc,facs,fac1,fac2,fn,
* fpmax,fpms,f1,f2,f3,hti,htj,p,pi,pinv,piv,pi2,p1,p2,p3,ri,si,
* sigma,sq,store,wi,rn,one,con1,con9,con4,half,ten
integer i,iband,iband1,iband3,iband4,ich1,ich3,ii,ij,il,in,irot,
* iter,i1,i2,i3,j,jlt,jrot,j1,j2,l,la,lf,lh,ll,lp,lt,lwest,l1,l2,
* l3,l4,ncof,ncoff,npp,np4,nreg,nrint,nrr,nr1,ntt,nt4,nt6,num,
* num1,rank
c ..local arrays..
real*8 ht(4),hp(4)
c ..function references..
real*8 abs,atan,fprati,sqrt,cos,sin
integer min0
c ..subroutine references..
c fpback,fpbspl,fpgivs,fpdisc,fporde,fprank,fprota,fprpsp
c ..
c set constants
one = 0.1e+01
con1 = 0.1e0
con9 = 0.9e0
con4 = 0.4e-01
half = 0.5e0
ten = 0.1e+02
pi = atan(one)*4
pi2 = pi+pi
eps = sqrt(eta)
if(iopt.lt.0) go to 70
c calculation of acc, the absolute tolerance for the root of f(p)=s.
acc = tol*s
if(iopt.eq.0) go to 10
if(s.lt.sup) then
if (np.lt.11) go to 60
go to 70
endif
c if iopt=0 we begin by computing the weighted least-squares polynomial
c of the form
c s(teta,phi) = c1*f1(teta) + cn*fn(teta)
c where f1(teta) and fn(teta) are the cubic polynomials satisfying
c f1(0) = 1, f1(pi) = f1'(0) = f1'(pi) = 0 ; fn(teta) = 1-f1(teta).
c the corresponding weighted sum of squared residuals gives the upper
c bound sup for the smoothing factor s.
10 sup = 0.
d1 = 0.
d2 = 0.
c1 = 0.
cn = 0.
fac1 = pi*(one + half)
fac2 = (one + one)/pi**3
aa = 0.
do 40 i=1,m
wi = w(i)
ri = r(i)*wi
arg = teta(i)
fn = fac2*arg*arg*(fac1-arg)
f1 = (one-fn)*wi
fn = fn*wi
if(fn.eq.0.) go to 20
call fpgivs(fn,d1,co,si)
call fprota(co,si,f1,aa)
call fprota(co,si,ri,cn)
20 if(f1.eq.0.) go to 30
call fpgivs(f1,d2,co,si)
call fprota(co,si,ri,c1)
30 sup = sup+ri*ri
40 continue
if(d2.ne.0.) c1 = c1/d2
if(d1.ne.0.) cn = (cn-aa*c1)/d1
c find the b-spline representation of this least-squares polynomial
nt = 8
np = 8
do 50 i=1,4
c(i) = c1
c(i+4) = c1
c(i+8) = cn
c(i+12) = cn
tt(i) = 0.
tt(i+4) = pi
tp(i) = 0.
tp(i+4) = pi2
50 continue
fp = sup
c test whether the least-squares polynomial is an acceptable solution
fpms = sup-s
if(fpms.lt.acc) go to 960
c test whether we cannot further increase the number of knots.
60 if(npest.lt.11 .or. ntest.lt.9) go to 950
c find the initial set of interior knots of the spherical spline in
c case iopt = 0.
np = 11
tp(5) = pi*half
tp(6) = pi
tp(7) = tp(5)+pi
nt = 9
tt(5) = tp(5)
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 1 : computation of least-squares spherical splines. c
c ******************************************************** c
c if iopt < 0 we compute the least-squares spherical spline according c
c to the given set of knots. c
c if iopt >=0 we compute least-squares spherical splines with increas-c
c ing numbers of knots until the corresponding sum f(p=inf)<=s. c
c the initial set of knots then depends on the value of iopt: c
c if iopt=0 we start with one interior knot in the teta-direction c
c (pi/2) and three in the phi-direction (pi/2,pi,3*pi/2). c
c if iopt>0 we start with the set of knots found at the last call c
c of the routine. c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c main loop for the different sets of knots. m is a save upper bound
c for the number of trials.
70 do 570 iter=1,m
c find the position of the additional knots which are needed for the
c b-spline representation of s(teta,phi).
l1 = 4
l2 = l1
l3 = np-3
l4 = l3
tp(l2) = 0.
tp(l3) = pi2
do 80 i=1,3
l1 = l1+1
l2 = l2-1
l3 = l3+1
l4 = l4-1
tp(l2) = tp(l4)-pi2
tp(l3) = tp(l1)+pi2
80 continue
l = nt
do 90 i=1,4
tt(i) = 0.
tt(l) = pi
l = l-1
90 continue
c find nrint, the total number of knot intervals and nreg, the number
c of panels in which the approximation domain is subdivided by the
c intersection of knots.
ntt = nt-7
npp = np-7
nrr = npp/2
nr1 = nrr+1
nrint = ntt+npp
nreg = ntt*npp
c arrange the data points according to the panel they belong to.
call fporde(teta,phi,m,3,3,tt,nt,tp,np,nummer,index,nreg)
c find the b-spline coefficients coco and cosi of the cubic spline
c approximations sc(phi) and ss(phi) for cos(phi) and sin(phi).
do 100 i=1,npp
coco(i) = 0.
cosi(i) = 0.
do 100 j=1,npp
a(i,j) = 0.
100 continue
c the coefficients coco and cosi are obtained from the conditions
c sc(tp(i))=cos(tp(i)),resp. ss(tp(i))=sin(tp(i)),i=4,5,...np-4.
do 150 i=1,npp
l2 = i+3
arg = tp(l2)
call fpbspl(tp,np,3,arg,l2,hp)
do 110 j=1,npp
row(j) = 0.
110 continue
ll = i
do 120 j=1,3
if(ll.gt.npp) ll= 1
row(ll) = row(ll)+hp(j)
ll = ll+1
120 continue
facc = cos(arg)
facs = sin(arg)
do 140 j=1,npp
piv = row(j)
if(piv.eq.0.) go to 140
call fpgivs(piv,a(j,1),co,si)
call fprota(co,si,facc,coco(j))
call fprota(co,si,facs,cosi(j))
if(j.eq.npp) go to 150
j1 = j+1
i2 = 1
do 130 l=j1,npp
i2 = i2+1
call fprota(co,si,row(l),a(j,i2))
130 continue
140 continue
150 continue
call fpback(a,coco,npp,npp,coco,ncc)
call fpback(a,cosi,npp,npp,cosi,ncc)
c find ncof, the dimension of the spherical spline and ncoff, the
c number of coefficients in the standard b-spline representation.
nt4 = nt-4
np4 = np-4
ncoff = nt4*np4
ncof = 6+npp*(ntt-1)
c find the bandwidth of the observation matrix a.
iband = 4*npp
if(ntt.eq.4) iband = 3*(npp+1)
if(ntt.lt.4) iband = ncof
iband1 = iband-1
c initialize the observation matrix a.
do 160 i=1,ncof
f(i) = 0.
do 160 j=1,iband
a(i,j) = 0.
160 continue
c initialize the sum of squared residuals.
fp = 0.
c fetch the data points in the new order. main loop for the
c different panels.
do 340 num=1,nreg
c fix certain constants for the current panel; jrot records the column
c number of the first non-zero element in a row of the observation
c matrix according to a data point of the panel.
num1 = num-1
lt = num1/npp
l1 = lt+4
lp = num1-lt*npp+1
l2 = lp+3
lt = lt+1
jrot = 0
if(lt.gt.2) jrot = 3+(lt-3)*npp
c test whether there are still data points in the current panel.
in = index(num)
170 if(in.eq.0) go to 340
c fetch a new data point.
wi = w(in)
ri = r(in)*wi
c evaluate for the teta-direction, the 4 non-zero b-splines at teta(in)
call fpbspl(tt,nt,3,teta(in),l1,ht)
c evaluate for the phi-direction, the 4 non-zero b-splines at phi(in)
call fpbspl(tp,np,3,phi(in),l2,hp)
c store the value of these b-splines in spt and spp resp.
do 180 i=1,4
spp(in,i) = hp(i)
spt(in,i) = ht(i)
180 continue
c initialize the new row of observation matrix.
do 190 i=1,iband
h(i) = 0.
190 continue
c calculate the non-zero elements of the new row by making the cross
c products of the non-zero b-splines in teta- and phi-direction and
c by taking into account the conditions of the spherical splines.
do 200 i=1,npp
row(i) = 0.
200 continue
c take into account the condition (3) of the spherical splines.
ll = lp
do 210 i=1,4
if(ll.gt.npp) ll=1
row(ll) = row(ll)+hp(i)
ll = ll+1
210 continue
c take into account the other conditions of the spherical splines.
if(lt.gt.2 .and. lt.lt.(ntt-1)) go to 230
facc = 0.
facs = 0.
do 220 i=1,npp
facc = facc+row(i)*coco(i)
facs = facs+row(i)*cosi(i)
220 continue
c fill in the non-zero elements of the new row.
230 j1 = 0
do 280 j =1,4
jlt = j+lt
htj = ht(j)
if(jlt.gt.2 .and. jlt.le.nt4) go to 240
j1 = j1+1
h(j1) = h(j1)+htj
go to 280
240 if(jlt.eq.3 .or. jlt.eq.nt4) go to 260
do 250 i=1,npp
j1 = j1+1
h(j1) = row(i)*htj
250 continue
go to 280
260 if(jlt.eq.3) go to 270
h(j1+1) = facc*htj
h(j1+2) = facs*htj
h(j1+3) = htj
j1 = j1+2
go to 280
270 h(1) = h(1)+htj
h(2) = facc*htj
h(3) = facs*htj
j1 = 3
280 continue
do 290 i=1,iband
h(i) = h(i)*wi
290 continue
c rotate the row into triangle by givens transformations.
irot = jrot
do 310 i=1,iband
irot = irot+1
piv = h(i)
if(piv.eq.0.) go to 310
c calculate the parameters of the givens transformation.
call fpgivs(piv,a(irot,1),co,si)
c apply that transformation to the right hand side.
call fprota(co,si,ri,f(irot))
if(i.eq.iband) go to 320
c apply that transformation to the left hand side.
i2 = 1
i3 = i+1
do 300 j=i3,iband
i2 = i2+1
call fprota(co,si,h(j),a(irot,i2))
300 continue
310 continue
c add the contribution of the row to the sum of squares of residual
c right hand sides.
320 fp = fp+ri**2
c find the number of the next data point in the panel.
in = nummer(in)
go to 170
340 continue
c find dmax, the maximum value for the diagonal elements in the reduced
c triangle.
dmax = 0.
do 350 i=1,ncof
if(a(i,1).le.dmax) go to 350
dmax = a(i,1)
350 continue
c check whether the observation matrix is rank deficient.
sigma = eps*dmax
do 360 i=1,ncof
if(a(i,1).le.sigma) go to 370
360 continue
c backward substitution in case of full rank.
call fpback(a,f,ncof,iband,c,ncc)
rank = ncof
do 365 i=1,ncof
q(i,1) = a(i,1)/dmax
365 continue
go to 390
c in case of rank deficiency, find the minimum norm solution.
370 lwest = ncof*iband+ncof+iband
if(lwrk.lt.lwest) go to 925
lf = 1
lh = lf+ncof
la = lh+iband
do 380 i=1,ncof
ff(i) = f(i)
do 380 j=1,iband
q(i,j) = a(i,j)
380 continue
call fprank(q,ff,ncof,iband,ncc,sigma,c,sq,rank,wrk(la),
* wrk(lf),wrk(lh))
do 385 i=1,ncof
q(i,1) = q(i,1)/dmax
385 continue
c add to the sum of squared residuals, the contribution of reducing
c the rank.
fp = fp+sq
c find the coefficients in the standard b-spline representation of
c the spherical spline.
390 call fprpsp(nt,np,coco,cosi,c,ff,ncoff)
c test whether the least-squares spline is an acceptable solution.
if(iopt.lt.0) then
if (fp.le.0) go to 970
go to 980
endif
fpms = fp-s
if(abs(fpms).le.acc) then
if (fp.le.0) go to 970
go to 980
endif
c if f(p=inf) < s, accept the choice of knots.
if(fpms.lt.0.) go to 580
c test whether we cannot further increase the number of knots.
if(ncof.gt.m) go to 935
c search where to add a new knot.
c find for each interval the sum of squared residuals fpint for the
c data points having the coordinate belonging to that knot interval.
c calculate also coord which is the same sum, weighted by the position
c of the data points considered.
do 450 i=1,nrint
fpint(i) = 0.
coord(i) = 0.
450 continue
do 490 num=1,nreg
num1 = num-1
lt = num1/npp
l1 = lt+1
lp = num1-lt*npp
l2 = lp+1+ntt
jrot = lt*np4+lp
in = index(num)
460 if(in.eq.0) go to 490
store = 0.
i1 = jrot
do 480 i=1,4
hti = spt(in,i)
j1 = i1
do 470 j=1,4
j1 = j1+1
store = store+hti*spp(in,j)*c(j1)
470 continue
i1 = i1+np4
480 continue
store = (w(in)*(r(in)-store))**2
fpint(l1) = fpint(l1)+store
coord(l1) = coord(l1)+store*teta(in)
fpint(l2) = fpint(l2)+store
coord(l2) = coord(l2)+store*phi(in)
in = nummer(in)
go to 460
490 continue
c find the interval for which fpint is maximal on the condition that
c there still can be added a knot.
l1 = 1
l2 = nrint
if(ntest.lt.nt+1) l1=ntt+1
if(npest.lt.np+2) l2=ntt
c test whether we cannot further increase the number of knots.
if(l1.gt.l2) go to 950
500 fpmax = 0.
l = 0
do 510 i=l1,l2
if(fpmax.ge.fpint(i)) go to 510
l = i
fpmax = fpint(i)
510 continue
if(l.eq.0) go to 930
c calculate the position of the new knot.
arg = coord(l)/fpint(l)
c test in what direction the new knot is going to be added.
if(l.gt.ntt) go to 530
c addition in the teta-direction
l4 = l+4
fpint(l) = 0.
fac1 = tt(l4)-arg
fac2 = arg-tt(l4-1)
if(fac1.gt.(ten*fac2) .or. fac2.gt.(ten*fac1)) go to 500
j = nt
do 520 i=l4,nt
tt(j+1) = tt(j)
j = j-1
520 continue
tt(l4) = arg
nt = nt+1
go to 570
c addition in the phi-direction
530 l4 = l+4-ntt
if(arg.lt.pi) go to 540
arg = arg-pi
l4 = l4-nrr
540 fpint(l) = 0.
fac1 = tp(l4)-arg
fac2 = arg-tp(l4-1)
if(fac1.gt.(ten*fac2) .or. fac2.gt.(ten*fac1)) go to 500
ll = nrr+4
j = ll
do 550 i=l4,ll
tp(j+1) = tp(j)
j = j-1
550 continue
tp(l4) = arg
np = np+2
nrr = nrr+1
do 560 i=5,ll
j = i+nrr
tp(j) = tp(i)+pi
560 continue
c restart the computations with the new set of knots.
570 continue
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 2: determination of the smoothing spherical spline. c
c ******************************************************** c
c we have determined the number of knots and their position. we now c
c compute the coefficients of the smoothing spline sp(teta,phi). c
c the observation matrix a is extended by the rows of a matrix, expres-c
c sing that sp(teta,phi) must be a constant function in the variable c
c phi and a cubic polynomial in the variable teta. the corresponding c
c weights of these additional rows are set to 1/(p). iteratively c
c we than have to determine the value of p such that f(p) = sum((w(i)* c
c (r(i)-sp(teta(i),phi(i))))**2) be = s. c
c we already know that the least-squares polynomial corresponds to p=0,c
c and that the least-squares spherical spline corresponds to p=infin. c
c the iteration process makes use of rational interpolation. since f(p)c
c is a convex and strictly decreasing function of p, it can be approx- c
c imated by a rational function of the form r(p) = (u*p+v)/(p+w). c
c three values of p (p1,p2,p3) with corresponding values of f(p) (f1= c
c f(p1)-s,f2=f(p2)-s,f3=f(p3)-s) are used to calculate the new value c
c of p such that r(p)=s. convergence is guaranteed by taking f1>0,f3<0.c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c evaluate the discontinuity jumps of the 3-th order derivative of
c the b-splines at the knots tt(l),l=5,...,nt-4.
580 call fpdisc(tt,nt,5,bt,ntest)
c evaluate the discontinuity jumps of the 3-th order derivative of
c the b-splines at the knots tp(l),l=5,...,np-4.
call fpdisc(tp,np,5,bp,npest)
c initial value for p.
p1 = 0.
f1 = sup-s
p3 = -one
f3 = fpms
p = 0.
do 585 i=1,ncof
p = p+a(i,1)
585 continue
rn = ncof
p = rn/p
c find the bandwidth of the extended observation matrix.
iband4 = iband+3
if(ntt.le.4) iband4 = ncof
iband3 = iband4 -1
ich1 = 0
ich3 = 0
c iteration process to find the root of f(p)=s.
do 920 iter=1,maxit
pinv = one/p
c store the triangularized observation matrix into q.
do 600 i=1,ncof
ff(i) = f(i)
do 590 j=1,iband4
q(i,j) = 0.
590 continue
do 600 j=1,iband
q(i,j) = a(i,j)
600 continue
c extend the observation matrix with the rows of a matrix, expressing
c that for teta=cst. sp(teta,phi) must be a constant function.
nt6 = nt-6
do 720 i=5,np4
ii = i-4
do 610 l=1,npp
row(l) = 0.
610 continue
ll = ii
do 620 l=1,5
if(ll.gt.npp) ll=1
row(ll) = row(ll)+bp(ii,l)
ll = ll+1
620 continue
facc = 0.
facs = 0.
do 630 l=1,npp
facc = facc+row(l)*coco(l)
facs = facs+row(l)*cosi(l)
630 continue
do 720 j=1,nt6
c initialize the new row.
do 640 l=1,iband
h(l) = 0.
640 continue
c fill in the non-zero elements of the row. jrot records the column
c number of the first non-zero element in the row.
jrot = 4+(j-2)*npp
if(j.gt.1 .and. j.lt.nt6) go to 650
h(1) = facc
h(2) = facs
if(j.eq.1) jrot = 2
go to 670
650 do 660 l=1,npp
h(l)=row(l)
660 continue
670 do 675 l=1,iband
h(l) = h(l)*pinv
675 continue
ri = 0.
c rotate the new row into triangle by givens transformations.
do 710 irot=jrot,ncof
piv = h(1)
i2 = min0(iband1,ncof-irot)
if(piv.eq.0.) then
if (i2.le.0) go to 720
go to 690
endif
c calculate the parameters of the givens transformation.
call fpgivs(piv,q(irot,1),co,si)
c apply that givens transformation to the right hand side.
call fprota(co,si,ri,ff(irot))
if(i2.eq.0) go to 720
c apply that givens transformation to the left hand side.
do 680 l=1,i2
l1 = l+1
call fprota(co,si,h(l1),q(irot,l1))
680 continue
690 do 700 l=1,i2
h(l) = h(l+1)
700 continue
h(i2+1) = 0.
710 continue
720 continue
c extend the observation matrix with the rows of a matrix expressing
c that for phi=cst. sp(teta,phi) must be a cubic polynomial.
do 810 i=5,nt4
ii = i-4
do 810 j=1,npp
c initialize the new row
do 730 l=1,iband4
h(l) = 0.
730 continue
c fill in the non-zero elements of the row. jrot records the column
c number of the first non-zero element in the row.
j1 = 1
do 760 l=1,5
il = ii+l
ij = npp
if(il.ne.3 .and. il.ne.nt4) go to 750
j1 = j1+3-j
j2 = j1-2
ij = 0
if(il.ne.3) go to 740
j1 = 1
j2 = 2
ij = j+2
740 h(j2) = bt(ii,l)*coco(j)
h(j2+1) = bt(ii,l)*cosi(j)
750 h(j1) = h(j1)+bt(ii,l)
j1 = j1+ij
760 continue
do 765 l=1,iband4
h(l) = h(l)*pinv
765 continue
ri = 0.
jrot = 1
if(ii.gt.2) jrot = 3+j+(ii-3)*npp
c rotate the new row into triangle by givens transformations.
do 800 irot=jrot,ncof
piv = h(1)
i2 = min0(iband3,ncof-irot)
if(piv.eq.0.) then
if (i2.le.0) go to 810
go to 780
endif
c calculate the parameters of the givens transformation.
call fpgivs(piv,q(irot,1),co,si)
c apply that givens transformation to the right hand side.
call fprota(co,si,ri,ff(irot))
if(i2.eq.0) go to 810
c apply that givens transformation to the left hand side.
do 770 l=1,i2
l1 = l+1
call fprota(co,si,h(l1),q(irot,l1))
770 continue
780 do 790 l=1,i2
h(l) = h(l+1)
790 continue
h(i2+1) = 0.
800 continue
810 continue
c find dmax, the maximum value for the diagonal elements in the
c reduced triangle.
dmax = 0.
do 820 i=1,ncof
if(q(i,1).le.dmax) go to 820
dmax = q(i,1)
820 continue
c check whether the matrix is rank deficient.
sigma = eps*dmax
do 830 i=1,ncof
if(q(i,1).le.sigma) go to 840
830 continue
c backward substitution in case of full rank.
call fpback(q,ff,ncof,iband4,c,ncc)
rank = ncof
go to 845
c in case of rank deficiency, find the minimum norm solution.
840 lwest = ncof*iband4+ncof+iband4
if(lwrk.lt.lwest) go to 925
lf = 1
lh = lf+ncof
la = lh+iband4
call fprank(q,ff,ncof,iband4,ncc,sigma,c,sq,rank,wrk(la),
* wrk(lf),wrk(lh))
845 do 850 i=1,ncof
q(i,1) = q(i,1)/dmax
850 continue
c find the coefficients in the standard b-spline representation of
c the spherical spline.
call fprpsp(nt,np,coco,cosi,c,ff,ncoff)
c compute f(p).
fp = 0.
do 890 num = 1,nreg
num1 = num-1
lt = num1/npp
lp = num1-lt*npp
jrot = lt*np4+lp
in = index(num)
860 if(in.eq.0) go to 890
store = 0.
i1 = jrot
do 880 i=1,4
hti = spt(in,i)
j1 = i1
do 870 j=1,4
j1 = j1+1
store = store+hti*spp(in,j)*c(j1)
870 continue
i1 = i1+np4
880 continue
fp = fp+(w(in)*(r(in)-store))**2
in = nummer(in)
go to 860
890 continue
c test whether the approximation sp(teta,phi) is an acceptable solution
fpms = fp-s
if(abs(fpms).le.acc) go to 980
c test whether the maximum allowable number of iterations has been
c reached.
if(iter.eq.maxit) go to 940
c carry out one more step of the iteration process.
p2 = p
f2 = fpms
if(ich3.ne.0) go to 900
if((f2-f3).gt.acc) go to 895
c our initial choice of p is too large.
p3 = p2
f3 = f2
p = p*con4
if(p.le.p1) p = p1*con9 + p2*con1
go to 920
895 if(f2.lt.0.) ich3 = 1
900 if(ich1.ne.0) go to 910
if((f1-f2).gt.acc) go to 905
c our initial choice of p is too small
p1 = p2
f1 = f2
p = p/con4
if(p3.lt.0.) go to 920
if(p.ge.p3) p = p2*con1 +p3*con9
go to 920
905 if(f2.gt.0.) ich1 = 1
c test whether the iteration process proceeds as theoretically
c expected.
910 if(f2.ge.f1 .or. f2.le.f3) go to 945
c find the new value of p.
p = fprati(p1,f1,p2,f2,p3,f3)
920 continue
c error codes and messages.
925 ier = lwest
go to 990
930 ier = 5
go to 990
935 ier = 4
go to 990
940 ier = 3
go to 990
945 ier = 2
go to 990
950 ier = 1
go to 990
960 ier = -2
go to 990
970 ier = -1
fp = 0.
980 if(ncof.ne.rank) ier = -rank
990 return
end