mountcontrol/cxx/mcc_mount_pz_container.h
2025-08-08 23:50:55 +03:00

268 lines
8.2 KiB
C++

#pragma once
/* MOUNT CONTROL COMPONENTS LIBRARY */
/* A DEFAULT IMPLEMENTATION OF PROHIBITED ZONES HOLDER */
#include "mcc_mount_concepts.h"
namespace mcc
{
template <traits::mcc_mount_telemetry_data_c TelemetryDataT>
class MccPZoneContainer : public traits::MccPZoneAbstractContainer<TelemetryDataT>
{
public:
typedef TelemetryDataT telemetry_data_t;
// a type to which the result of calling prohibited zone class methods 'timeTo' and 'timeFrom' will be converted
typedef std::chrono::duration<double> duration_t; // seconds as floating-point number
// adaptor class for prohibited zones
struct MccPZoneWrapper {
using duration_t = MccPZoneContainer::duration_t;
static constexpr duration_t infiniteDuration{std::numeric_limits<double>::infinity()};
static constexpr duration_t zeroDuration{0.0};
typedef std::function<bool(const TelemetryDataT&)> pz_inzone_func_t;
typedef std::function<duration_t(const TelemetryDataT&)> pz_timeto_func_t;
typedef std::function<duration_t(const TelemetryDataT&)> pz_timefrom_func_t;
MccCoordPairKind coordPairKind;
const std::function<std::string()> name;
pz_inzone_func_t inZone;
pz_timeto_func_t timeTo;
pz_timefrom_func_t timeFrom;
MccPZoneWrapper(MccPZoneWrapper&& other)
: inZone(std::move(other.inZone)), timeTo(std::move(other.timeTo)), timeFrom(std::move(other.timeFrom)) {};
MccPZoneWrapper& operator=(MccPZoneWrapper&& other)
{
if (this != &other) {
inZone = std::move(other.inZone);
timeTo = std::move(other.timeTo);
timeFrom = std::move(other.timeFrom);
}
return *this;
};
MccPZoneWrapper() = default;
};
MccPZoneContainer() = default;
virtual ~MccPZoneContainer() = default;
size_t pzSize() const { return _pzWrapperVec.size(); }
// add zone/zones
template <traits::mcc_prohibited_zone_c<telemetry_data_t> ZT,
traits::mcc_prohibited_zone_c<telemetry_data_t>... ZTs>
size_t pzAddZone(ZT zone, ZTs... zones)
{
auto zone_ptr = std::make_shared<ZT>(std::move(zone));
using d_t = typename MccPZoneWrapper::duration_t;
_pzWrapperVec.emplace_back(
{.coordPairKind = ZT::zoneCoordPairKind,
.name = [zone_ptr]() { return std::format("{}", zone_ptr->name()); },
.inZone = [zone_ptr](const telemetry_data_t& tmry_data) { return zone_ptr->inZone(tmry_data); },
.timeTo =
[zone_ptr](const telemetry_data_t& tmry_data) {
auto d = zone_ptr->timeTo(tmry_data);
if constexpr (std::same_as<typename ZT::duration_t, d_t>) {
return d;
} else {
if (d == ZT::infiniteDuration) {
return MccPZoneWrapper::infiniteDuration;
} else if (d == ZT::zeroDuration) {
return MccPZoneWrapper::zeroDuration;
}
return std::chrono::duration_cast<d_t>(d);
}
},
.timeFrom =
[zone_ptr](const telemetry_data_t& tmry_data) {
auto d = zone_ptr->timeFrom(tmry_data);
if constexpr (std::same_as<typename ZT::duration_t, d_t>) {
return d;
} else {
if (d == ZT::infiniteDuration) {
return MccPZoneWrapper::infiniteDuration;
} else if (d == ZT::zeroDuration) {
return MccPZoneWrapper::zeroDuration;
}
return std::chrono::duration_cast<d_t>(d);
}
}});
if constexpr (sizeof...(ZTs)) {
pzAddZone(std::move(zones)...);
}
return _pzWrapperVec.size();
}
void pzClearZones()
{
// stop mount here?!!
_pzWrapperVec.clear();
}
// visitors
template <std::invocable<MccPZoneWrapper> FT>
auto pzForeachZone(FT&& func)
requires std::same_as<std::invoke_result_t<FT, MccPZoneWrapper>, void>
{
for (auto& wr : _pzWrapperVec) {
std::forward<FT>(func)(wr);
}
}
template <std::invocable<MccPZoneWrapper> FT,
std::ranges::output_range<std::invoke_result_t<FT, MccPZoneWrapper>> ResT =
std::vector<std::invoke_result_t<FT, MccPZoneWrapper>>>
auto pzForeachZone(FT&& func)
requires(!std::same_as<std::invoke_result_t<FT, MccPZoneWrapper>, void>)
{
ResT result;
for (auto& wr : _pzWrapperVec) {
std::back_inserter(result) = std::forward<FT>(func)(wr);
}
return result;
}
template <std::ranges::output_range<bool> RT>
bool pzInZone(const telemetry_data_t& tdata, RT& result)
{
bool in_zone = false;
auto const p_tdata = &tdata;
result = pzForeachZone<RT>([&in_zone, p_tdata](auto& wr) {
bool r = wr.inZone(*p_tdata);
in_zone |= r;
return r;
});
return in_zone;
}
template <std::ranges::output_range<bool> RT>
bool pzInZone(traits::mcc_celestial_point_c auto const& target, RT& result)
{
bool in_zone = false;
auto const p_target = &target;
result = pzForeachZone<RT>([&in_zone, p_target](auto& wr) {
bool r = wr.inZone(*p_target);
in_zone |= r;
return r;
});
return in_zone;
}
protected:
std::vector<MccPZoneWrapper> _pzWrapperVec{};
};
class PZC
{
protected:
struct point_t {
typedef std::chrono::system_clock::time_point time_point_t;
typedef double coord_t;
time_point_t time_point;
MccCoordPairKind coordPairKind;
coord_t x, y;
};
static_assert(traits::mcc_celestial_point_c<point_t>);
template <typename ZT>
static inline std::unordered_map<const PZC*, std::vector<std::shared_ptr<ZT>>> _zones{};
std::vector<std::function<void()>> _clearFunc{};
// template <typename ZT, typename CPT>
// static inline std::unordered_map<const PZC*, std::function<std::vector<bool>(const CPT&)>> _inZoneFunc = [](){
// };
// template <typename ZT, typename CPT>
// static inline std::function<std::vector<bool>(const PZC*, const CPT&)> _inZoneFunc =
// [](const PZC* cont, const CPT& cp) {
// std::vector<bool> res;
// for (ZT& zone : _zones<ZT>[cont]) {
// res.emplace_back(zone.inZone(cp));
// }
// return res;
// };
std::vector<std::function<bool(const point_t&)>> _inZoneFunc;
public:
template <typename ZT>
size_t addZone(ZT zone)
{
auto sptr = std::make_shared<ZT>(std::move(zone));
_zones<ZT>[this].emplace_back(sptr);
if (_zones<ZT>[this].size() == 1) {
_clearFunc.emplace_back([this]() { _zones<ZT>[this].clear(); });
_inZoneFunc.emplace_back([sptr](const point_t& cp) { return sptr->inZone(cp); });
}
}
template <typename CPT, std::ranges::output_range<bool> RT>
bool inZone(const CPT& cp, RT& res)
{
using tp_t = typename point_t::time_point_t;
using cp_tp_t = typename CPT::time_point_t;
bool in_zone = false, r;
point_t pt{.coordPairKind = cp.coordPairKind, .x = cp.x, .y = cp.y};
if constexpr (traits::mcc_systime_c<cp_tp_t>) {
pt.time_point = std::chrono::time_point_cast<tp_t>(cp.time_point);
} else if constexpr (std::is_arithmetic_v<cp_tp_t>) {
pt.time_point = tp_t{std::chrono::duration<tp_t::rep>(static_cast<tp_t::rep>(cp.time_point))};
} else {
static_assert(false, "INVALID TYPE!");
}
res = RT();
for (auto& func : _inZoneFunc) {
r = func(pt);
in_zone |= r;
std::back_inserter(res) = r;
}
return in_zone;
}
};
} // namespace mcc