mountcontrol/cxx/mcc_mount_telemetry.h
2025-07-09 18:47:13 +03:00

218 lines
7.1 KiB
C++

#pragma once
/* MOUNT CONTROL COMPONENTS LIBRARY */
/* MOUNT TELEMETRY OBJECT CONCEPT AND POSSIBLE IMPLEMENTATION */
#include <functional>
#include <mutex>
// #include "mcc_mount_config.h"
#include "mcc_mount_concepts.h"
namespace mcc
{
// namespace traits
// {
// template <typename T>
// concept mcc_mount_telemetry_c = requires(T t, const T t_const) {
// typename T::error_t;
// typename T::mount_telemetry_data_t;
// { t_const.errorString(std::declval<typename T::error_t>()) } -> mcc_formattable;
// { t.update() } -> std::same_as<typename T::error_t>;
// { t_const.data() } -> std::same_as<typename T::mount_telemetry_data_t>;
// };
// } // namespace traits
template <traits::mcc_astrom_engine_c ASTROM_ENGINE_T,
traits::mcc_mount_pec_c PEC_T,
traits::mcc_mount_hardware_c HARDWARE_T>
class MccMountTelemetry
{
public:
typedef ASTROM_ENGINE_T astrom_engine_t;
typedef PEC_T pec_t;
typedef HARDWARE_T hardware_t;
enum error_t : int { TEL_ERROR_OK = 0, TEL_ERROR_HARDWARE, TEL_ERROR_ASTROMETRY_COMP };
// check for coordinate types consistency
static_assert(std::convertible_to<typename hardware_t::coord_t, typename astrom_engine_t::coord_t>,
"HARDWARE COORDINATE TYPE MUST BE CONVERTIBLE TO ASTROMETRY ENGINE ONE!");
static_assert(std::convertible_to<typename astrom_engine_t::coord_t, typename pec_t::coord_t>,
"ASTROMETRY ENGINE COORDINATE TYPE MUST BE CONVERTIBLE TO PEC ONE!");
static_assert(std::same_as<typename astrom_engine_t::time_point_t, typename hardware_t::time_point_t>,
"TIME-POINT TYPE IN ASTROMETRY ENGINE AND HARDWARE MUST BE THE SAME!");
// mount current telemetry data: time, position and related quantities
struct mount_telemetry_data_t {
typedef astrom_engine_t::coord_t mnt_coord_t;
// typedef astrom_engine_t::coord_t mnt_speed_t;
// time-related
typename astrom_engine_t::time_point_t utc; // time point of measurements, UTC
typename astrom_engine_t::juldate_t jd; // Julian date
typename astrom_engine_t::sideral_time_t siderTime; // local apperant sideral time
// astrom_engine_t::time_point_t ut1; // Universal time
// astrom_engine_t::time_point_t tt; // Terrestial time
// apparent target (user-input) current coordinates (in radians)
mnt_coord_t tagRA, tagDEC;
mnt_coord_t tagHA;
mnt_coord_t tagAZ, tagALT;
mnt_coord_t tagPA; // paralactic angle
// encoder-measured current mount coordinates (in radians)
mnt_coord_t mntRA, mntDEC;
mnt_coord_t mntHA;
mnt_coord_t mntAZ, mntALT;
typename astrom_engine_t::pa_t mntPA;
// encoder-measured (non-corrected for PCS) current mount position and moving speed (in radians, radians/s)
// X - HA, Y - DEC for equatorial-type mount; X - AZ, Y - ALT for horizontal-type one
mnt_coord_t mntPosX, mntPosY;
// mnt_speed_t mntSpeedX, mntSpeedY;
// current refraction coefficients
typename pec_t::pec_result_t currRefrCoeffs;
// current refraction correction (for mntALT)
mnt_coord_t currRefr;
// PEC (pointing error correction):
// X - HA, Y - DEC for equatorial-type mount; X - AZ, Y - ALT for horizontal-type one
mnt_coord_t pecX, pecY;
};
MccMountTelemetry(astrom_engine_t& astrom_engine, pec_t& pec, hardware_t& hardware)
{
// to be sure that arguments are captured by reference
const auto astrom_engine_ptr = &astrom_engine;
const auto pec_ptr = &pec;
const auto hardware_ptr = &hardware;
_updateImpl = [astrom_engine_ptr, pec_ptr, hardware_ptr, this]() {
mount_telemetry_data_t current_data;
// computing ...
typename hardware_t::axes_pos_t ax_pos;
auto err = hardware_ptr->getPos(ax_pos);
if (err) {
// logging?!!!
return TEL_ERROR_HARDWARE;
}
_data.utc = ax_pos.time_point;
_data.mntPosX = ax_pos.x;
_data.mntPosY = ax_pos.y;
// compute Julian date
auto ast_err = astrom_engine_ptr->greg2jul(_data.utc, _data.jd);
if (ast_err) {
return TEL_ERROR_ASTROMETRY_COMP;
}
// compute local apparent sideral time
ast_err = astrom_engine_ptr->apparentSiderTime(_data.jd, _data.siderTime, true);
if (ast_err) {
return TEL_ERROR_ASTROMETRY_COMP;
}
// compute equation of origins
typename astrom_engine_t::eo_t eo;
ast_err = astrom_engine_ptr->eqOrigins(_data.jd, eo);
if (ast_err) {
return TEL_ERROR_ASTROMETRY_COMP;
}
typename pec_t::pec_result_t pec_res;
pec_res = pec_ptr->compute(ax_pos.x, ax_pos.y);
if constexpr (mccIsEquatorialMount(pec_t::mountType)) {
_data.mntHA = pec_res.x + ax_pos.x;
_data.mntDEC = pec_res.y + ax_pos.y;
ast_err = astrom_engine_ptr->hadec2azalt(_data.mntHA, _data.mntDEC, _data.mntAZ, _data.mntALT);
if (ast_err) {
return TEL_ERROR_ASTROMETRY_COMP;
}
} else if constexpr (mccIsAltAzMount(pec_t::mountType)) {
_data.mntAZ = pec_res.x + ax_pos.x;
_data.mntALT = pec_res.y + ax_pos.x;
ast_err = astrom_engine_ptr->azalt2hadec(_data.mntAZ, _data.mntALT, _data.mntHA, _data.mntDEC);
if (ast_err) {
return TEL_ERROR_ASTROMETRY_COMP;
}
} else {
static_assert(false, "UNSUPPORTED MOUNT TYPE!");
}
// compute CIO-based apparent RA
_data.mntRA = _data.siderTime - _data.mntHA + eo;
// compute PA
ast_err = astrom_engine_ptr->hadec2pa(_data.mntHA, _data.mntDEC, _data.mntPA);
if (ast_err) {
return TEL_ERROR_ASTROMETRY_COMP;
}
ast_err = astrom_engine_ptr->refraction(_data.currRefrCoeffs);
if (ast_err) {
return TEL_ERROR_ASTROMETRY_COMP;
}
ast_err = astrom_engine_ptr->refractCorrection(_data.mntALT, _data.currRefrCoeffs, _data.currRefr);
if (ast_err) {
return TEL_ERROR_ASTROMETRY_COMP;
}
std::lock_guard lock{_updateMutex};
_data = std::move(current_data);
};
}
virtual ~MccMountTelemetry() = default;
// update current data method
error_t update()
{
_updateImpl();
}
mount_telemetry_data_t data(this auto&& self)
{
using self_t = decltype(self);
std::lock_guard lock{std::forward<self_t>(self)._updateMutex};
return std::move(std::forward<self_t>(self)._data);
}
protected:
mount_telemetry_data_t _data{};
std::function<error_t()> _updateImpl{};
std::mutex _updateMutex;
};
} // namespace mcc