mountcontrol/cxx/mcc_mount_pec.h
2025-07-09 18:47:13 +03:00

216 lines
6.6 KiB
C++

#pragma once
/* MOUNT CONTROL COMPONENTS LIBRARY */
/* AN REFERENCE "PERIODIC-ERROR-CORRECTION" CLASS IMPLEMENTATION */
#include <mutex>
#include "fitpack/fitpack.h"
#include "mcc_mount_concepts.h"
#include "mcc_mount_coord.h"
namespace mcc
{
// namespace traits
// {
// template <typename T, typename XT, typename YT>
// concept mcc_mount_pec_c = requires(T t, const T t_const, XT x, YT y) {
// typename T::pec_data_t;
// typename T::pec_result_t;
// { t.setData(std::declval<typename T::pec_data_t>()) };
// { t_const.getData() } -> std::same_as<typename T::pec_data_t>;
// { t.compute(std::declval<const XT&>(), std::declval<const YT&>()) } -> std::same_as<typename T::pec_result_t>;
// };
// } // namespace traits
// type of PEC corrections (algorithm used):
// PEC_TYPE_GEOMETRY - "classic" geometry-based correction coefficients
// PEC_TYPE_GEOMETRY_BSPLINE - previous one and additional 2D B-spline corrections
// PEC_TYPE_BSPLINE - pure 2D B-spline corrections
enum class MccMountDefaultPECType { PEC_TYPE_GEOMETRY, PEC_TYPE_GEOMETRY_BSPLINE, PEC_TYPE_BSPLINE };
template <MccMountType MOUNT_TYPE>
class MccMountDefaultPEC
{
public:
static constexpr MccMountType mountType = MOUNT_TYPE;
typedef MccAngle coord_t;
struct pec_result_t {
MccAngle dx, dy;
};
// "classic" geometric PEC coefficients
struct pec_geom_coeffs_t {
typedef double coeff_t;
coeff_t zeroPointX;
coeff_t zeroPointY;
coeff_t collimationErr; // tube collimation error
coeff_t nonperpendErr; // X-Y axes nonperpendicularity
coeff_t misalignErr1; // misalignment of hour-angle/azimuth axis: left-right for equatorial, East-West for
// alt-azimuthal
coeff_t misalignErr2; // misalignment of hour-angle/azimuth axis: vertical for equatorial, North-South for
// alt-azimuthal
coeff_t tubeFlexure;
coeff_t forkFlexure;
coeff_t DECaxisFlexure; // declination axis flexure
};
// B-splines coefficients
struct pec_bspline_coeffs_t {
typedef double knot_t;
typedef double coeff_t;
size_t bsplDegreeX = 3;
size_t bsplDegreeY = 3;
std::vector<knot_t> knotsX{};
std::vector<knot_t> knotsY{};
std::vector<coeff_t> coeffsX{};
std::vector<coeff_t> coeffsY{};
};
struct pec_data_t {
MccMountDefaultPECType type{MccMountDefaultPECType::PEC_TYPE_GEOMETRY};
double siteLatitude{0.0}; // in radians
pec_geom_coeffs_t geomCoefficients{};
pec_bspline_coeffs_t bsplineCoefficients{};
};
// constructors
MccMountDefaultPEC(pec_data_t pdata)
: _pecData(std::move(pdata)),
_phi(_pecData.siteLatitude),
_geomCoeffs(_pecData.geomCoefficients),
_bsplCoeffs(_pecData.bsplineCoefficients)
{
}
void setData(pec_data_t pdata)
{
std::lock_guard lock(_pecDataMutex);
_pecData = std::move(pdata);
_phi = _pecData.siteLatitude;
_geomCoeffs = _pecData.geomCoefficients;
_bsplCoeffs = _pecData.bsplineCoefficients;
}
pec_data_t getData() const
{
std::lock_guard lock(_pecDataMutex);
return _pecData;
}
void setType(MccMountDefaultPECType type)
{
std::lock_guard lock(_pecDataMutex);
_pecData.type = type;
}
MccMountDefaultPECType getType() const
{
std::lock_guard lock(_pecDataMutex);
return _pecData.type;
}
// X and Y axis encoder coordinates
pec_result_t compute(const coord_t& x, const coord_t& y)
{
pec_result_t res{0.0, 0.0};
std::lock_guard lock(_pecDataMutex);
if constexpr (mcc_is_equatorial_mount<MOUNT_TYPE>) { // equatorial
if (_pecData.type == MccMountDefaultPECType::PEC_TYPE_GEOMETRY) {
const auto cosPhi = std::cos(_phi);
const auto sinPhi = std::sin(_phi);
const auto tanY = std::tan(y);
const auto sinX = std::sin(x);
const auto cosX = std::cos(x);
const auto cosY = std::cos(y);
if (utils::isEqual(cosY, 0.0)) {
res.dx = _geomCoeffs.zeroPointX;
} else {
res.dx = _geomCoeffs.zeroPointX + _geomCoeffs.collimationErr / cosY +
_geomCoeffs.nonperpendErr * tanY - _geomCoeffs.misalignErr1 * cosX * tanY +
_geomCoeffs.misalignErr2 * sinX * tanY + _geomCoeffs.tubeFlexure * cosPhi * sinX / cosY -
_geomCoeffs.DECaxisFlexure * (cosPhi * cosX + sinPhi * tanY);
}
res.dy = _geomCoeffs.zeroPointY + _geomCoeffs.misalignErr1 * sinX + _geomCoeffs.misalignErr2 * cosX +
_geomCoeffs.tubeFlexure * (cosPhi * cosX * std::sin(y) - sinPhi * cosY);
if (!utils::isEqual(cosX, 0.0)) {
res.dy += _geomCoeffs.forkFlexure / cosX;
}
}
if (_pecData.type == MccMountDefaultPECType::PEC_TYPE_BSPLINE ||
_pecData.type == MccMountDefaultPECType::PEC_TYPE_GEOMETRY_BSPLINE) {
double spl_valX, spl_valY;
int ret = fitpack::fitpack_eval_spl2d(_bsplCoeffs.knotsX, _bsplCoeffs.knotsY, _bsplCoeffs.coeffsX, x, y,
spl_valX, _bsplCoeffs.bsplDegreeX, _bsplCoeffs.bsplDegreeY);
if (ret) {
res.dx = std::numeric_limits<double>::quiet_NaN();
res.dy = std::numeric_limits<double>::quiet_NaN();
return res;
}
ret = fitpack::fitpack_eval_spl2d(_bsplCoeffs.knotsX, _bsplCoeffs.knotsY, _bsplCoeffs.coeffsY, x, y,
spl_valY, _bsplCoeffs.bsplDegreeX, _bsplCoeffs.bsplDegreeY);
if (ret) {
res.dx = std::numeric_limits<double>::quiet_NaN();
res.dy = std::numeric_limits<double>::quiet_NaN();
return res;
}
res.dx += spl_valX;
res.dy += spl_valY;
}
} else if constexpr (mcc_is_altaz_mount<MOUNT_TYPE>) {
} else {
static_assert(false, "UNSUPPORTED");
}
return res;
}
private:
pec_data_t _pecData;
double& _phi;
pec_geom_coeffs_t& _geomCoeffs;
pec_bspline_coeffs_t& _bsplCoeffs;
mutable std::mutex _pecDataMutex;
};
} // namespace mcc