mountcontrol/cxx/mcc_slew_model.h
2025-08-06 02:06:59 +03:00

443 lines
17 KiB
C++

#pragma once
/* MOUNT CONTROL COMPONENTS LIBRARY */
/* A VERY SIMPLE SLEW MODEL GENERIC IMPLEMENTATION */
#include "mcc_mount_concepts.h"
#include "mcc_mount_telemetry.h"
#include "mcc_slew_guiding_model_common.h"
namespace mcc
{
enum class MccSimpleSlewModelErrorCode : int {
ERROR_OK,
ERROR_UNSUPPORTED_COORD_PAIR,
ERROR_IN_PROHIBITED_ZONE,
ERROR_ASTROM_COMP,
ERROR_TELEMETRY_DATA,
ERROR_PEC_COMP,
ERROR_HARDWARE_SETPOS,
ERROR_HARDWARE_GETPOS,
ERROR_SLEW_STOPPED,
ERROR_SLEW_ADJ_MAXITER,
ERROR_SLEW_TIMEOUT
};
} // namespace mcc
namespace std
{
template <>
class is_error_code_enum<mcc::MccSimpleSlewModelErrorCode> : public true_type
{
};
} // namespace std
namespace mcc
{
/* error category definition */
// error category
struct MccSimpleSlewModelCategory : public std::error_category {
MccSimpleSlewModelCategory() : std::error_category() {}
const char* name() const noexcept { return "ADC_GENERIC_DEVICE"; }
std::string message(int ec) const
{
MccSimpleSlewModelErrorCode err = static_cast<MccSimpleSlewModelErrorCode>(ec);
switch (err) {
case MccSimpleSlewModelErrorCode::ERROR_OK:
return "OK";
case MccSimpleSlewModelErrorCode::ERROR_UNSUPPORTED_COORD_PAIR:
return "slew model: unsupported coordinate pair";
case MccSimpleSlewModelErrorCode::ERROR_IN_PROHIBITED_ZONE:
return "slew model: position is in prohibited zone";
case MccSimpleSlewModelErrorCode::ERROR_ASTROM_COMP:
return "slew model: cannot perform astrometrical computations";
case MccSimpleSlewModelErrorCode::ERROR_TELEMETRY_DATA:
return "slew model: cannot get telemetry data";
case MccSimpleSlewModelErrorCode::ERROR_PEC_COMP:
return "slew model: cannot compute PEC corrections";
case MccSimpleSlewModelErrorCode::ERROR_HARDWARE_SETPOS:
return "slew model: cannot set position";
case MccSimpleSlewModelErrorCode::ERROR_HARDWARE_GETPOS:
return "slew model: cannot get position";
case MccSimpleSlewModelErrorCode::ERROR_SLEW_STOPPED:
return "slew model: stopped";
case MccSimpleSlewModelErrorCode::ERROR_SLEW_ADJ_MAXITER:
return "slew model: max number of adjusting iteration was exceeded";
case MccSimpleSlewModelErrorCode::ERROR_SLEW_TIMEOUT:
return "slew model: timeout occured while slewing";
default:
return "UNKNOWN";
}
}
static const MccSimpleSlewModelCategory& get()
{
static const MccSimpleSlewModelCategory constInst;
return constInst;
}
};
inline std::error_code make_error_code(MccSimpleSlewModelErrorCode ec)
{
return std::error_code(static_cast<int>(ec), MccSimpleSlewModelCategory::get());
}
/*
* It is very simple slew model!
* There are no any complex routes (bypass of prohibited),
* just a strait path from current point to target
*
*/
template <traits::mcc_logger_c LoggerT = MccNullLogger>
class MccSimpleSlewModel : public LoggerT
{
public:
using LoggerT::logDebug;
using LoggerT::logError;
using LoggerT::logInfo;
using LoggerT::logMessage;
using LoggerT::logWarn;
typedef std::error_code error_t;
static constexpr size_t defaultAdjustSuccessCycles = 5;
using slew_point_t = MccSlewAndGuidingPoint;
template <traits::mcc_mount_telemetry_c TELEMETRY_T,
traits::mcc_mount_hardware_c HARDWARE_T,
traits::mcc_tuple_c PZ_T, // std::tuple of prohibited zones
typename... LoggerCtorArgTs>
MccSimpleSlewModel(TELEMETRY_T& telemetry,
HARDWARE_T& hardware,
PZ_T& prohibited_zone,
LoggerCtorArgTs&&... ctor_args)
requires(!std::same_as<LoggerT, MccNullLogger>)
: LoggerT(std::forward<LoggerCtorArgTs>(ctor_args)...)
{
logDebug(std::format("Create 'MccSimpleSlewModel' class instance ({})", (void*)this));
init(telemetry, hardware, prohibited_zone);
}
template <traits::mcc_mount_telemetry_c TELEMETRY_T,
traits::mcc_mount_hardware_c HARDWARE_T,
traits::mcc_tuple_c PZ_T // std::tuple of prohibited zones
>
MccSimpleSlewModel(TELEMETRY_T& telemetry, HARDWARE_T& hardware, PZ_T& prohibited_zone)
requires(std::same_as<LoggerT, MccNullLogger>)
{
init(telemetry, hardware, prohibited_zone);
}
MccSimpleSlewModel(MccSimpleSlewModel&& other)
: _stopRequested(other._stopRequested.load()), _slewFunc(std::move(other._slewFunc))
{
}
MccSimpleSlewModel& operator=(MccSimpleSlewModel&& other)
{
if (this == &other) {
return *this;
}
_stopRequested = other._stopRequested.load();
_slewFunc = std::move(_slewFunc);
return *this;
};
MccSimpleSlewModel(const MccSimpleSlewModel&) = delete;
MccSimpleSlewModel& operator=(const MccSimpleSlewModel&) = delete;
virtual ~MccSimpleSlewModel()
{
logDebug(std::format("Delete 'MccSimpleSlewModel' class instance ({})", (void*)this));
}
error_t slew(slew_point_t pars)
{
_stopRequested = false;
error_t res_err = _slewFunc(std::move(pars));
return res_err;
}
error_t stop()
{
_stopRequested = true;
return MccSimpleSlewModelErrorCode::ERROR_OK;
}
protected:
std::atomic_bool _stopRequested{false};
std::function<error_t(const slew_point_t&)> _slewFunc{};
void init(auto& telemetry, auto& hardware, auto& prohibited_zones)
{
// deduce controls types
using hardware_t = decltype(hardware);
using telemetry_t = decltype(telemetry);
static_assert(traits::mcc_mount_default_telemetry_c<telemetry_t>,
"TELEMETRY CLASS MUST BE A DESCENDANT OF 'MccMountTelemetry'!");
using astrom_engine_t = typename telemetry_t::astrom_engine_t;
static constexpr size_t Nzones = std::tuple_size_v<decltype(prohibited_zones)>;
const auto p_telemetry = &telemetry;
const auto p_hardware = &hardware;
const auto p_prohibited_zones = &prohibited_zones;
_slewFunc = [p_telemetry, p_hardware, p_prohibited_zones, this](slew_point_t slew_point) {
_stopRequested = false;
typename hardware_t::axes_pos_t ax_pos;
error_t res_err;
// typename astrom_engine_t::error_t ast_err;
typename telemetry_t::error_t t_err;
typename telemetry_t::mount_telemetry_data_t t_data;
if (slew_point.withinToleranceCycleNumber == 0) {
slew_point.withinToleranceCycleNumber = MccSlewAndGuidingPoint::defaultWithinToleranceCycleNumber;
}
// first, compute encoder coordinates
ax_pos.time_point = astrom_engine_t::timePointNow();
t_err = p_telemetry->toHardware(slew_point, ax_pos.time_point, ax_pos.x, ax_pos.y);
if (!t_err) {
// SETUP TARGET SKY POINT
t_err = p_telemetry->setTarget(slew_point);
}
if (t_err) {
if constexpr (std::same_as<decltype(t_err), error_t>) {
logError(std::format("An telemetry error occured: code = {} ({})", t_err.value(), t_err.message()));
return t_err;
} else {
if constexpr (traits::mcc_formattable<decltype(t_err)>) {
logError(std::format("An telemetry error occured: code = {}", t_err));
}
return MccSimpleSlewModelErrorCode::ERROR_TELEMETRY_DATA;
}
}
// start moving the mount (it is assumed this is asynchronous operation!!!)
ax_pos.xrate = slew_point.slewXRate;
ax_pos.yrate = slew_point.slewYRate;
ax_pos.moving_type = hardware_t::hw_moving_type_t::HW_MOVE_SLEWING;
typename hardware_t::error_t hw_err = p_hardware->setPos(ax_pos);
if (hw_err) {
if constexpr (std::same_as<decltype(hw_err), error_t>) {
logError(
std::format("An hardware error occured: code = {} ({})", hw_err.value(), hw_err.message()));
return hw_err;
} else {
if constexpr (traits::mcc_formattable<decltype(hw_err)>) {
logError(std::format("An hardware error occured: code = {}", hw_err));
}
return MccSimpleSlewModelErrorCode::ERROR_HARDWARE_SETPOS;
}
}
// typename hardware_t::axes_pos_t::time_point_t prev_time_point{};
auto adj_ax_pos = ax_pos; // to prevent possible effects in hardware 'setPos' method
adj_ax_pos.xrate = slew_point.adjustXRate;
adj_ax_pos.yrate = slew_point.adjustYRate;
adj_ax_pos.moving_type = hardware_t::hw_moving_type_t::HW_MOVE_ADJUSTING;
typename telemetry_t::mount_telemetry_data_t::coord_t adj_rad2 = slew_point.adjustCoordDiff *
slew_point.adjustCoordDiff,
tol_rad2 = slew_point.slewToleranceRadius *
slew_point.slewToleranceRadius;
std::array<bool, Nzones> in_zone_flag;
size_t i_adj_cycle = 0;
size_t i_in_tol_cycle = 0;
bool in_adj_mode = false;
// compute new hardware coordinate of target
// auto compute_new_coord = [](auto const& t_data, typename hardware_t::axes_pos_t& hw_pos) {
// // current celestial position of target is already computed for given time point
// // so one needs only correct apparent coordinates for PEC corrections
// hw_pos.time_point = t_data.time_point;
// if constexpr (mccIsEquatorialMount(pec_t::mountType)) {
// hw_pos.x = t_data.tagHA - t_data.pecX;
// hw_pos.y = t_data.tagDEC - t_data.pecY;
// } else if constexpr (mccIsAltAzMount(pec_t::mountType)) {
// hw_pos.x = t_data.tagAZ - t_data.pecX;
// hw_pos.y = t_data.tagALT - t_data.pecY;
// } else {
// static_assert(false, "UNSUPPORTED MOUNT TYPE!");
// }
// };
auto cycle_func = [&](auto& t_data) mutable {
if (_stopRequested) {
res_err = MccSimpleSlewModelErrorCode::ERROR_SLEW_STOPPED;
}
// check for prohibited zones
if (mccCheckInZonePZTuple(t_data, *p_prohibited_zones, in_zone_flag)) {
return MccSimpleSlewModelErrorCode::ERROR_IN_PROHIBITED_ZONE;
};
// t_data was updated in caller!!!
auto coord_diff = p_telemetry->targetToMountDiff();
if (_stopRequested) {
res_err = MccSimpleSlewModelErrorCode::ERROR_SLEW_STOPPED;
}
if (coord_diff.r2 < adj_rad2) { // adjusting mode
in_adj_mode = true;
// compute_new_coord(t_data, adj_ax_pos);
adj_ax_pos.time_point = t_data.time_point;
adj_ax_pos.x += coord_diff.xdiff;
adj_ax_pos.y += coord_diff.ydiff;
hw_err = p_hardware->setPos(adj_ax_pos);
if (!hw_err) {
++i_adj_cycle;
if (coord_diff.r2 < tol_rad2) {
++i_in_tol_cycle;
if (i_in_tol_cycle == slew_point.withinToleranceCycleNumber) {
res_err = MccSimpleSlewModelErrorCode::ERROR_OK;
return;
}
}
if (i_adj_cycle == slew_point.maxAdjustingCycleNumber) {
res_err = MccSimpleSlewModelErrorCode::ERROR_SLEW_ADJ_MAXITER;
return;
}
} else {
if constexpr (std::same_as<decltype(hw_err), error_t>) {
logError(std::format("An hardware error occured: code = {} ({})", hw_err.value(),
hw_err.message()));
res_err = hw_err;
} else {
if constexpr (traits::mcc_formattable<decltype(hw_err)>) {
logError(std::format("An hardware error occured: code = {}", hw_err));
}
res_err = MccSimpleSlewModelErrorCode::ERROR_HARDWARE_SETPOS;
}
return;
}
} else { // continue to slewing
if (in_adj_mode) { // ?!!!!!!!!!!!!! slew again?!!!
logWarn(std::format(
"The slewing is in adjusting mode but computed target-to-mount coordinate difference "
"'{}' is greater than limit '{}' for adjusting mode!",
coord_diff.r2, adj_rad2));
in_adj_mode = false;
i_adj_cycle = 0;
i_in_tol_cycle = 0;
// compute_new_coord(t_data, ax_pos);
adj_ax_pos.time_point = t_data.time_point;
adj_ax_pos.x += coord_diff.xdiff;
adj_ax_pos.y += coord_diff.ydiff;
ax_pos.time_point = t_data.time_point;
ax_pos.x = adj_ax_pos.x;
ax_pos.y = adj_ax_pos.y;
// send command for slewing
typename hardware_t::error_t hw_err = p_hardware->setPos(ax_pos);
if (hw_err) {
if constexpr (std::same_as<decltype(hw_err), error_t>) {
logError(std::format("An hardware error occured: code = {} ({})", hw_err.value(),
hw_err.message()));
return hw_err;
} else {
if constexpr (traits::mcc_formattable<decltype(hw_err)>) {
logError(std::format("An hardware error occured: code = {}", hw_err));
}
return MccSimpleSlewModelErrorCode::ERROR_HARDWARE_SETPOS;
}
}
}
}
};
auto start_poll_tm = std::chrono::steady_clock::now();
// NOTE: TARGET COORDINATES WILL BE UPDATED FOR CURRENT TIME-POINT IN TELEMETRY-CLASS!!!
while (true) {
t_err = p_telemetry->waitForUpdatedData(t_data, slew_point.telemetryUpdateTimeout);
if (t_err) {
std::string err_str = "An error occured while waiting for updated telemetry";
if constexpr (std::same_as<decltype(t_err), error_t>) {
std::format_to(std::back_inserter(err_str), ": code = {} ({})", t_err.value(), t_err.message());
logError(err_str);
return t_err;
} else {
if constexpr (traits::mcc_formattable<decltype(t_err)>) {
std::format_to(std::back_inserter(err_str), ": code = {}", t_err.value());
}
logError(err_str);
return MccSimpleSlewModelErrorCode::ERROR_TELEMETRY_DATA;
}
}
cycle_func(t_data);
if (res_err) {
return res_err;
}
if ((std::chrono::steady_clock::now() - start_poll_tm) > slew_point.slewTimeout) {
logError("Waiting time for completion of slewing expired!");
return MccSimpleSlewModelErrorCode::ERROR_SLEW_TIMEOUT;
}
}
return MccSimpleSlewModelErrorCode::ERROR_OK;
};
}
};
static_assert(std::movable<MccSimpleSlewModel<>>);
} // namespace mcc