mountcontrol/asibfm700/asibfm700_configfile.h

792 lines
27 KiB
C++

#pragma once
/**/
#include <expected>
#include <filesystem>
#include <fstream>
#include <mcc_angle.h>
#include <mcc_moving_model_common.h>
#include <mcc_pcm.h>
#include <mcc_utils.h>
#include "asibfm700_common.h"
#include "asibfm700_servocontroller.h"
namespace asibfm700
{
/* A SIMPLE "KEYWORD - VALUE" HOLDER CLASS SUITABLE TO STORE SOME APPLICATION CONFIGURATION */
// to follow std::variant requirements (not references, not array, not void)
template <typename T>
concept config_record_valid_type_c = requires { !std::is_array_v<T> && !std::is_void_v<T> && !std::is_reference_v<T>; };
// simple minimal-requirement configuration record class
template <config_record_valid_type_c T>
struct simple_config_record_t {
std::string_view key;
T value;
};
/* ASTOROSIB FM700 MOUNT CONFIGURATION CLASS */
// configuration description and its defaults
static auto Asibfm700MountConfigDefaults = std::make_tuple(
// main cycle period in millisecs
simple_config_record_t{"hardwarePollingPeriod", std::chrono::milliseconds{100}},
/* geographic coordinates of the observation site */
// site latitude in degrees
simple_config_record_t{"siteLatitude", mcc::MccAngle(43.646711_degs)},
// site longitude in degrees
simple_config_record_t{"siteLongitude", mcc::MccAngle(41.440732_degs)},
// site elevation in meters
simple_config_record_t{"siteElevation", 2070.0},
/* celestial coordinate transformation */
// wavelength at which refraction is calculated (in mkm)
simple_config_record_t{"refractWavelength", 0.55},
// an empty filename means default precompiled string
simple_config_record_t{"leapSecondFilename", std::string()},
// an empty filename means default precompiled string
simple_config_record_t{"bulletinAFilename", std::string()},
/* pointing correction model */
// PCM default type
simple_config_record_t{"pcmType", mcc::MccDefaultPCMType::PCM_TYPE_GEOMETRY},
// PCM geometrical coefficients
simple_config_record_t{"pcmGeomCoeffs", std::vector<double>{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}},
// PCM B-spline degrees
simple_config_record_t{"pcmBsplineDegree", std::vector<size_t>{3, 3}},
// PCM B-spline knots along X-axis (HA-angle or azimuth). By default from 0 to 2*PI radians
// NOTE: The first and last values are interpretated as border knots!!!
// Thus the array length must be equal to or greater than 2!
simple_config_record_t{"pcmBsplineXknots",
std::vector<double>{0.0, 0.6981317, 1.3962634, 2.0943951, 2.7925268, 3.4906585, 4.1887902,
4.88692191, 5.58505361, 6.28318531}},
// PCM B-spline knots along Y-axis (declination or zenithal distance). By default from -PI/6 to PI/2 radians
// NOTE: The first and last values are interpretated as border knots!!!
// Thus the array length must be equal to or greater than 2!
simple_config_record_t{"pcmBsplineYknots",
std::vector<double>{-0.52359878, -0.29088821, -0.05817764, 0.17453293, 0.40724349,
0.63995406, 0.87266463, 1.10537519, 1.33808576, 1.57079633}},
// PCM B-spline coeffs for along X-axis (HA-angle or azimuth)
simple_config_record_t{"pcmBsplineXcoeffs", std::vector<double>{}},
// PCM B-spline coeffs for along Y-axis (declination or zenithal distance)
simple_config_record_t{"pcmBsplineYcoeffs", std::vector<double>{}},
/* slewing and tracking parameters */
// // arcseconds per second
// simple_config_record_t{"sideralRate", 15.0410686},
// timeout for telemetry updating in milliseconds
simple_config_record_t{"telemetryTimeout", std::chrono::milliseconds(3000)},
// minimal allowed time in seconds to prohibited zone
simple_config_record_t{"minTimeToPZone", std::chrono::seconds(10)},
// a time interval to update prohibited zones related quantities (millisecs)
simple_config_record_t{"updatingPZoneInterval", std::chrono::milliseconds(5000)},
// coordinates difference in arcsecs to stop slewing
simple_config_record_t{"slewToleranceRadius", 5.0},
// target-mount coordinate difference in arcsecs to start adjusting of slewing
simple_config_record_t{"adjustCoordDiff", 50.0},
// minimum time in millisecs between two successive adjustments
simple_config_record_t{"adjustCycleInterval", std::chrono::milliseconds(300)},
// slew process timeout in seconds
simple_config_record_t{"slewTimeout", std::chrono::seconds(3600)},
// a time shift into future to compute target position in future (UT1-scale time duration, millisecs)
simple_config_record_t{"timeShiftToTargetPoint", std::chrono::milliseconds(10000)},
// minimum time in millisecs between two successive tracking corrections
simple_config_record_t{"trackingCycleInterval", std::chrono::milliseconds(300)},
// maximal valid target-to-mount distance for tracking process (arcsecs)
// if current distance is greater than assume current mount coordinate as target point
simple_config_record_t{"trackingMaxCoordDiff", 20.0},
/* prohibited zones */
// minimal altitude
simple_config_record_t{"pzMinAltitude", mcc::MccAngle(10.0_degs)},
// HA-axis limit switch minimal value
simple_config_record_t{"pzLimitSwitchHAMin", mcc::MccAngle(-170.0_degs)},
// HA-axis limit switch maximal value
simple_config_record_t{"pzLimitSwitchHAMax", mcc::MccAngle(170.0_degs)},
// DEC-axis limit switch minimal value
simple_config_record_t{"pzLimitSwitchDecMin", mcc::MccAngle(-90.0_degs)},
// DEC-axis limit switch maximal value
simple_config_record_t{"pzLimitSwitchDecMax", mcc::MccAngle(90.0_degs)},
/* hardware-related */
// hardware mode: 1 - model mode, otherwise real mode
simple_config_record_t{"RunModel", 0},
// mount serial device paths
simple_config_record_t{"MountDevPath", std::string("/dev/ttyUSB0")},
// mount serial device speed
simple_config_record_t{"MountDevSpeed", 19200},
// motor encoders serial device path
simple_config_record_t{"EncoderDevPath", std::string("")},
// X-axis encoder serial device path
simple_config_record_t{"EncoderXDevPath", std::string("/dev/encoderX0")},
// Y-axis encoder serial device path
simple_config_record_t{"EncoderYDevPath", std::string("/dev/encoderY0")},
// encoders serial device speed
simple_config_record_t{"EncoderDevSpeed", 153000},
// ==1 if encoder works as separate serial device, ==2 if there's new version with two devices
simple_config_record_t{"SepEncoder", 2},
// mount polling interval in millisecs
simple_config_record_t{"MountReqInterval", std::chrono::milliseconds(100)},
// encoders polling interval in millisecs
simple_config_record_t{"EncoderReqInterval", std::chrono::milliseconds(50)},
// mount axes rate calculation interval in millisecs
simple_config_record_t{"EncoderSpeedInterval", std::chrono::milliseconds(100)},
// X-axis coordinate PID P,I,D-params
simple_config_record_t{"XPIDC", std::vector<double>{0.8, 0.1, 0.3}},
// X-axis rate PID P,I,D-params
simple_config_record_t{"XPIDV", std::vector<double>{1.0, 0.01, 0.2}},
// Y-axis coordinate PID P, I, D-params
simple_config_record_t{"YPIDC", std::vector<double>{0.8, 0.1, 0.3}},
// Y-axis rate PID P,I,D-params
simple_config_record_t{"YPIDV", std::vector<double>{0.5, 0.2, 0.5}},
// maximal moving rate (degrees per second) along HA-axis (Y-axis of Sidereal servo microcontroller)
simple_config_record_t{"hwMaxRateHA", mcc::MccAngle(8.0_degs)},
// maximal moving rate (degrees per second) along DEC-axis (X-axis of Sidereal servo microcontroller)
simple_config_record_t{"hwMaxRateDEC", mcc::MccAngle(10.0_degs)}
);
class Asibfm700MountConfig : public mcc::utils::KeyValueHolder<decltype(Asibfm700MountConfigDefaults)>
{
using base_t = mcc::utils::KeyValueHolder<decltype(Asibfm700MountConfigDefaults)>;
protected:
inline static auto deserializer = []<typename VT>(std::string_view str, VT& value) {
std::error_code ec{};
mcc::utils::MccSimpleDeserializer deser;
deser.setRangeDelim(base_t::VALUE_ARRAY_DELIM);
if constexpr (std::is_arithmetic_v<VT> || mcc::traits::mcc_output_char_range<VT> || std::ranges::range<VT> ||
mcc::traits::mcc_time_duration_c<VT>) {
// ec = base_t::defaultDeserializeFunc(str, value);
ec = deser(str, value);
} else if constexpr (std::same_as<VT, mcc::MccAngle>) { // assume here all angles are in degrees
double vd;
// ec = base_t::defaultDeserializeFunc(str, vd);
ec = deser(str, value);
if (!ec) {
value = mcc::MccAngle(vd, mcc::MccDegreeTag{});
}
} else if constexpr (std::same_as<VT, mcc::MccDefaultPCMType>) {
std::string vstr;
// ec = base_t::defaultDeserializeFunc(str, vstr);
ec = deser(str, value);
if (!ec) {
auto s = mcc::utils::trimSpaces(vstr);
if (s == mcc::MccDefaultPCMTypeString<mcc::MccDefaultPCMType::PCM_TYPE_GEOMETRY>) {
value = mcc::MccDefaultPCMType::PCM_TYPE_GEOMETRY;
} else if (s == mcc::MccDefaultPCMTypeString<mcc::MccDefaultPCMType::PCM_TYPE_GEOMETRY_BSPLINE>) {
value = mcc::MccDefaultPCMType::PCM_TYPE_GEOMETRY;
} else if (s == mcc::MccDefaultPCMTypeString<mcc::MccDefaultPCMType::PCM_TYPE_BSPLINE>) {
value = mcc::MccDefaultPCMType::PCM_TYPE_BSPLINE;
} else {
ec = std::make_error_code(std::errc::invalid_argument);
}
}
} else {
ec = std::make_error_code(std::errc::invalid_argument);
}
return ec;
};
public:
/* the most usefull config fields */
template <mcc::traits::mcc_time_duration_c DT>
DT hardwarePollingPeriod() const
{
return std::chrono::duration_cast<DT>(
getValue<std::chrono::milliseconds>("hardwarePollingPeriod").value_or(std::chrono::milliseconds{}));
};
std::chrono::milliseconds hardwarePollingPeriod() const
{
return hardwarePollingPeriod<std::chrono::milliseconds>();
};
template <mcc::mcc_angle_c T>
T siteLatitude() const
{
return static_cast<double>(getValue<mcc::MccAngle>("siteLatitude").value_or(mcc::MccAngle{}));
};
mcc::MccAngle siteLatitude() const
{
return siteLatitude<mcc::MccAngle>();
};
template <mcc::mcc_angle_c T>
T siteLongitude() const
{
return static_cast<double>(getValue<mcc::MccAngle>("siteLongitude").value_or(mcc::MccAngle{}));
};
mcc::MccAngle siteLongitude() const
{
return siteLongitude<mcc::MccAngle>();
};
template <typename T>
T siteElevation() const
requires std::is_arithmetic_v<T>
{
return getValue<double>("siteElevation").value_or(0.0);
}
double siteElevation() const
{
return getValue<double>("siteElevation").value_or(0.0);
};
template <typename T>
T refractWavelength() const
requires std::is_arithmetic_v<T>
{
return getValue<double>("refractWavelength").value_or(0.0);
}
double refractWavelength() const
{
return getValue<double>("refractWavelength").value_or(0.0);
};
template <mcc::traits::mcc_view_or_output_char_range R>
R leapSecondFilename() const
{
R r;
if constexpr (std::ranges::view<R>) {
std::string const& val = getValue<std::string>("leapSecondFilename").value_or("");
r = R{val.begin(), val.end()};
} else {
std::string val = getValue<std::string>("leapSecondFilename").value_or("");
std::ranges::copy(val, std::back_inserter(r));
}
return r;
}
std::string_view leapSecondFilename() const
{
return leapSecondFilename<std::string_view>();
};
template <mcc::traits::mcc_view_or_output_char_range R>
R bulletinAFilename() const
{
R r;
if constexpr (std::ranges::view<R>) {
std::string const& val = getValue<std::string>("bulletinAFilename").value_or("");
r = R{val.begin(), val.end()};
} else {
std::string val = getValue<std::string>("bulletinAFilename").value_or("");
std::ranges::copy(val, std::back_inserter(r));
}
return r;
}
std::string_view bulletinAFilename() const
{
return bulletinAFilename<std::string_view>();
};
template <mcc::mcc_angle_c T>
T pzMinAltitude() const
{
return static_cast<double>(getValue<mcc::MccAngle>("pzMinAltitude").value_or(mcc::MccAngle{}));
};
mcc::MccAngle pzMinAltitude() const
{
return pzMinAltitude<mcc::MccAngle>();
};
template <mcc::mcc_angle_c T>
T pzLimitSwitchHAMin() const
{
return static_cast<double>(getValue<mcc::MccAngle>("pzLimitSwitchHAMin").value_or(mcc::MccAngle{}));
};
mcc::MccAngle pzLimitSwitchHAMin() const
{
return pzLimitSwitchHAMin<mcc::MccAngle>();
};
template <mcc::mcc_angle_c T>
T pzLimitSwitchHAMax() const
{
return static_cast<double>(getValue<mcc::MccAngle>("pzLimitSwitchHAMax").value_or(mcc::MccAngle{}));
};
mcc::MccAngle pzLimitSwitchHAMax() const
{
return pzLimitSwitchHAMax<mcc::MccAngle>();
};
AsibFM700ServoController::hardware_config_t servoControllerConfig() const
{
AsibFM700ServoController::hardware_config_t hw_cfg;
hw_cfg.hwConfig = {};
hw_cfg.MountDevPath = getValue<std::string>("MountDevPath").value_or({});
hw_cfg.EncoderDevPath = getValue<std::string>("EncoderDevPath").value_or({});
hw_cfg.EncoderXDevPath = getValue<std::string>("EncoderXDevPath").value_or({});
hw_cfg.EncoderYDevPath = getValue<std::string>("EncoderYDevPath").value_or({});
hw_cfg.devConfig.MountDevPath = hw_cfg.MountDevPath.data();
hw_cfg.devConfig.EncoderDevPath = hw_cfg.EncoderDevPath.data();
hw_cfg.devConfig.EncoderXDevPath = hw_cfg.EncoderXDevPath.data();
hw_cfg.devConfig.EncoderYDevPath = hw_cfg.EncoderYDevPath.data();
hw_cfg.devConfig.RunModel = getValue<int>("RunModel").value_or({});
hw_cfg.devConfig.MountDevSpeed = getValue<int>("MountDevSpeed").value_or({});
hw_cfg.devConfig.EncoderDevSpeed = getValue<int>("EncoderDevSpeed").value_or({});
hw_cfg.devConfig.SepEncoder = getValue<int>("SepEncoder").value_or({});
std::chrono::duration<double> secs; // seconds as floating-point
secs = getValue<std::chrono::milliseconds>("MountReqInterval").value_or({});
hw_cfg.devConfig.MountReqInterval = secs.count();
secs = getValue<std::chrono::milliseconds>("EncoderReqInterval").value_or({});
hw_cfg.devConfig.EncoderReqInterval = secs.count();
secs = getValue<std::chrono::milliseconds>("EncoderSpeedInterval").value_or({});
hw_cfg.devConfig.EncoderSpeedInterval = secs.count();
std::vector<double> pid = getValue<std::vector<double>>("XPIDC").value_or({});
if (pid.size() > 2) {
hw_cfg.devConfig.XPIDC.P = pid[0];
hw_cfg.devConfig.XPIDC.I = pid[1];
hw_cfg.devConfig.XPIDC.D = pid[2];
}
pid = getValue<std::vector<double>>("XPIDV").value_or({});
if (pid.size() > 2) {
hw_cfg.devConfig.XPIDV.P = pid[0];
hw_cfg.devConfig.XPIDV.I = pid[1];
hw_cfg.devConfig.XPIDV.D = pid[2];
}
pid = getValue<std::vector<double>>("YPIDC").value_or({});
if (pid.size() > 2) {
hw_cfg.devConfig.YPIDC.P = pid[0];
hw_cfg.devConfig.YPIDC.I = pid[1];
hw_cfg.devConfig.YPIDC.D = pid[2];
}
pid = getValue<std::vector<double>>("YPIDV").value_or({});
if (pid.size() > 2) {
hw_cfg.devConfig.YPIDV.P = pid[0];
hw_cfg.devConfig.YPIDV.I = pid[1];
hw_cfg.devConfig.YPIDV.D = pid[2];
}
return hw_cfg;
}
mcc::MccSimpleMovingModelParams movingModelParams() const
{
static constexpr double arcsecs2rad = std::numbers::pi / 180.0 / 3600.0; // arcseconds to radians
mcc::MccSimpleMovingModelParams pars;
pars.telemetryTimeout =
getValue<decltype(pars.telemetryTimeout)>("telemetryTimeout").value_or(pars.telemetryTimeout);
pars.minTimeToPZone = getValue<decltype(pars.minTimeToPZone)>("minTimeToPZone").value_or(pars.minTimeToPZone);
pars.updatingPZoneInterval = getValue<decltype(pars.updatingPZoneInterval)>("updatingPZoneInterval")
.value_or(pars.updatingPZoneInterval);
pars.slewToleranceRadius =
getValue<decltype(pars.slewToleranceRadius)>("slewToleranceRadius").value_or(pars.slewToleranceRadius) *
arcsecs2rad;
pars.adjustCoordDiff =
getValue<decltype(pars.adjustCoordDiff)>("adjustCoordDiff").value_or(pars.adjustCoordDiff) * arcsecs2rad;
pars.adjustCycleInterval =
getValue<decltype(pars.adjustCycleInterval)>("adjustCycleInterval").value_or(pars.adjustCycleInterval);
pars.slewTimeout = getValue<decltype(pars.slewTimeout)>("slewTimeout").value_or(pars.slewTimeout);
pars.timeShiftToTargetPoint = getValue<decltype(pars.timeShiftToTargetPoint)>("timeShiftToTargetPoint")
.value_or(pars.timeShiftToTargetPoint);
pars.trackingCycleInterval = getValue<decltype(pars.trackingCycleInterval)>("trackingCycleInterval")
.value_or(pars.trackingCycleInterval);
pars.trackingMaxCoordDiff =
getValue<decltype(pars.trackingMaxCoordDiff)>("trackingMaxCoordDiff").value_or(pars.trackingMaxCoordDiff) *
arcsecs2rad;
return pars;
}
Asibfm700PCM::pcm_data_t pcmData() const
{
Asibfm700PCM::pcm_data_t pcm_data;
std::vector<double> empty_vec;
pcm_data.type = getValue<decltype(pcm_data.type)>("pcmType").value_or(pcm_data.type);
pcm_data.siteLatitude = getValue<mcc::MccAngle>("siteLatitude").value_or(pcm_data.siteLatitude);
std::vector<double> vec = getValue<std::vector<double>>("pcmGeomCoeffs").value_or(empty_vec);
if (vec.size() >= 9) { // must be 9 coefficients
pcm_data.geomCoefficients = {.zeroPointX = vec[0],
.zeroPointY = vec[1],
.collimationErr = vec[2],
.nonperpendErr = vec[3],
.misalignErr1 = vec[4],
.misalignErr2 = vec[5],
.tubeFlexure = vec[6],
.forkFlexure = vec[7],
.DECaxisFlexure = vec[8]};
}
std::vector<size_t> dd = getValue<decltype(dd)>("pcmBsplineDegree").value_or(dd);
if (dd.size() >= 2) {
pcm_data.bspline.bsplDegreeX = dd[0] > 0 ? dd[0] : 3;
pcm_data.bspline.bsplDegreeY = dd[1] > 0 ? dd[1] : 3;
}
vec = getValue<std::vector<double>>("pcmBsplineXknots").value_or(empty_vec);
// pid must contains interior and border (single point for each border) knots so minimal length must be 2
if (vec.size() >= 2) {
// generate full knots array (with border knots)
size_t Nknots = vec.size() + pcm_data.bspline.bsplDegreeX * 2 - 2;
pcm_data.bspline.knotsX.resize(Nknots);
for (size_t i = 0; i <= pcm_data.bspline.bsplDegreeX; ++i) { // border knots
pcm_data.bspline.knotsX[i] = vec[0];
pcm_data.bspline.knotsX[Nknots - i - 1] = vec.back();
}
for (size_t i = 0; i < (vec.size() - 2); ++i) { // interior knots
pcm_data.bspline.knotsX[i + pcm_data.bspline.bsplDegreeX] = vec[1 + i];
}
}
vec = getValue<std::vector<double>>("pcmBsplineYknots").value_or(empty_vec);
// pid must contains interior and border (single point for each border) knots so minimal length must be 2
if (vec.size() >= 2) {
// generate full knots array (with border knots)
size_t Nknots = vec.size() + pcm_data.bspline.bsplDegreeY * 2 - 2;
pcm_data.bspline.knotsY.resize(Nknots);
for (size_t i = 0; i <= pcm_data.bspline.bsplDegreeY; ++i) { // border knots
pcm_data.bspline.knotsY[i] = vec[0];
pcm_data.bspline.knotsY[Nknots - i - 1] = vec.back();
}
for (size_t i = 0; i < (vec.size() - 2); ++i) { // interior knots
pcm_data.bspline.knotsY[i + pcm_data.bspline.bsplDegreeY] = vec[1 + i];
}
}
// minimal allowed number of B-spline coefficients
size_t Ncoeffs = pcm_data.type == mcc::MccDefaultPCMType::PCM_TYPE_GEOMETRY
? 0
: (pcm_data.bspline.knotsX.size() - pcm_data.bspline.bsplDegreeX - 1) *
(pcm_data.bspline.knotsY.size() - pcm_data.bspline.bsplDegreeY - 1);
vec = getValue<std::vector<double>>("pcmBsplineXcoeffs").value_or(empty_vec);
if (vec.size() >= Ncoeffs) {
pcm_data.bspline.coeffsX.resize(Ncoeffs);
for (size_t i = 0; i < Ncoeffs; ++i) {
pcm_data.bspline.coeffsX[i] = vec[i];
}
}
vec = getValue<std::vector<double>>("pcmBsplineYcoeffs").value_or(empty_vec);
if (vec.size() >= Ncoeffs) {
pcm_data.bspline.coeffsY.resize(Ncoeffs);
for (size_t i = 0; i < Ncoeffs; ++i) {
pcm_data.bspline.coeffsY[i] = vec[i];
}
}
return pcm_data;
}
Asibfm700MountConfig() : base_t(Asibfm700MountConfigDefaults) {}
~Asibfm700MountConfig() = default;
std::error_code load(const std::filesystem::path& path)
{
std::string buffer;
std::error_code ec;
auto sz = std::filesystem::file_size(path, ec);
if (!ec && sz) {
std::ifstream fst(path);
try {
buffer.resize(sz);
fst.read(buffer.data(), sz);
fst.close();
ec = base_t::fromCharRange(buffer, deserializer);
} catch (std::ios_base::failure const& ex) {
ec = ex.code();
} catch (std::length_error const& ex) {
ec = std::make_error_code(std::errc::no_buffer_space);
} catch (std::bad_alloc const& ex) {
ec = std::make_error_code(std::errc::not_enough_memory);
} catch (...) {
ec = std::make_error_code(std::errc::operation_canceled);
}
}
return ec;
}
};
static constexpr std::string_view Asibfm700MountConfigString =
R"--(
#
# ASTROSIB FM-700 MOUNT DEFAULT CONFIGURATION
#
# (created 2025-10-01T03:00:00.0)
#
# main cycle period
hardwarePollingPeriod = 100
# geographic coordinates of the observation site
# site latitude in degrees
siteLatitude = 43.646711
# site longitude in degrees
siteLongitude = 41.440732
# site elevation in meters
siteElevation = 2070.0
# celestial coordinate transformation
# wavelength at which refraction is calculated (in mkm)
refractWavelength = 0.5
# an empty filename means default precompiled string
leapSecondFilename =
# an empty filename means default precompiled string
bulletinAFilename =
# pointing correction model
# PCM default type
pcmType = GEOMETRY
# PCM geometrical coefficients
pcmGeomCoeffs = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
# PCM B-spline degrees
pcmBsplineDegree = 3, 3
# PCM B-spline knots along X-axis (HA-angle or azimuth). By default from 0 to 2*PI radians
pcmBsplineXknots = 0.0, 0.6981317, 1.3962634, 2.0943951, 2.7925268, 3.4906585, 4.1887902, 4.88692191, 5.58505361, 6.28318531
# PCM B-spline knots along Y-axis (declination or zenithal distance). By default from -PI/6 to PI/2 radians
pcmBsplineYknots = -0.52359878, -0.29088821, -0.05817764, 0.17453293, 0.40724349, 0.63995406, 0.87266463, 1.10537519, 1.33808576, 1.57079633
# PCM B-spline coeffs for along X-axis (HA-angle or azimuth)
pcmBsplineXcoeffs =
# PCM B-spline coeffs for along Y-axis (declination or zenithal distance)
pcmBsplineYcoeffs =
# slewing and tracking parameters
# arcseconds per second
#sideralRate = 15.0410686
# timeout for telemetry updating in milliseconds
telemetryTimeout = 3000
# minimal allowed time in seconds to prohibited zone
minTimeToPZone = 10
# a time interval to update prohibited zones related quantities (millisecs)
updatingPZoneInterval = 5000
# coordinates difference in arcsecs to stop slewing
slewToleranceRadius = 5.0
# target-mount coordinate difference in arcsecs to start adjusting of slewing
adjustCoordDiff = 50.0
# minimum time in millisecs between two successive adjustments
adjustCycleInterval = 300
# slew process timeout in seconds
slewTimeout = 3600
# a time shift into future to compute target position in future (UT1-scale time duration, millisecs)
timeShiftToTargetPoint = 10000
# minimum time in millisecs between two successive tracking corrections
trackingCycleInterval = 300
# prohibited zones
# minimal altitude in degrees
pzMinAltitude = 10.0
# HA-axis limit switch minimal value in degrees
pzLimitSwitchHAMin = -170.0
# HA-axis limit switch maximal value in degrees
pzLimitSwitchHAMax = 170.0
# DEC-axis limit switch minimal value in degrees
pzLimitSwitchDecMin = -90.0
# DEC-axis limit switch maximal value in degrees
pzLimitSwitchDecMax = 90.0
# hardware-related
# hardware mode: 1 - model mode, otherwise real mode
RunModel = 0
# mount serial device paths
MountDevPath = /dev/ttyUSB0
# mount serial device speed
MountDevSpeed = 19200
# motor encoders serial device path
EncoderDevPath =
# X-axis encoder serial device path
EncoderXDevPath = /dev/encoderX0
# Y-axis encoder serial device path
EncoderYDevPath = /dev/encoderY0
# encoders serial device speed
EncoderDevSpeed = 153000
# ==1 if encoder works as separate serial device, ==2 if there's new version with two devices
SepEncoder = 2
# mount polling interval in millisecs
MountReqInterval = 100
# encoders polling interval in millisecs
EncoderReqInterval = 50
# mount axes rate calculation interval in millisecs
EncoderSpeedInterval = 100
# X-axis coordinate PID P,I,D-params
XPIDC = 0.8, 0.1, 0.3
# X-axis rate PID P,I,D-params
XPIDV = 1.0, 0.01, 0.2
# Y-axis coordinate PID P,I,D-params
YPIDC = 0.8, 0.1, 0.3
# Y-axis rate PID P,I,D-params
YPIDV = 0.5, 0.2, 0.5
# maximal moving rate (degrees per second) along HA-axis (Y-axis of Sidereal servo microcontroller)
hwMaxRateHA = 8.0
# maximal moving rate (degrees per second) along DEC-axis (X-axis of Sidereal servo microcontroller)
hwMaxRateDEC = 10.0
)--";
} // namespace asibfm700