2025-08-24 04:03:45 +03:00

842 lines
27 KiB
Fortran

recursive subroutine fppola(iopt1,iopt2,iopt3,m,u,v,z,w,rad,s,
* nuest,nvest,eta,tol,maxit,ib1,ib3,nc,ncc,intest,nrest,nu,tu,nv,
* tv,c,fp,sup,fpint,coord,f,ff,row,cs,cosi,a,q,bu,bv,spu,spv,h,
* index,nummer,wrk,lwrk,ier)
implicit none
c ..scalar arguments..
integer iopt1,iopt2,iopt3,m,nuest,nvest,maxit,ib1,ib3,nc,ncc,
* intest,nrest,nu,nv,lwrk,ier
real*8 s,eta,tol,fp,sup
c ..array arguments..
integer index(nrest),nummer(m)
real*8 u(m),v(m),z(m),w(m),tu(nuest),tv(nvest),c(nc),fpint(intest)
*,
* coord(intest),f(ncc),ff(nc),row(nvest),cs(nvest),cosi(5,nvest),
* a(ncc,ib1),q(ncc,ib3),bu(nuest,5),bv(nvest,5),spu(m,4),spv(m,4),
* h(ib3),wrk(lwrk)
c ..user supplied function..
real*8 rad
c ..local scalars..
real*8 acc,arg,co,c1,c2,c3,c4,dmax,eps,fac,fac1,fac2,fpmax,fpms,
* f1,f2,f3,hui,huj,p,pi,pinv,piv,pi2,p1,p2,p3,r,ratio,si,sigma,
* sq,store,uu,u2,u3,wi,zi,rn,one,two,three,con1,con4,con9,half,ten
integer i,iband,iband3,iband4,ich1,ich3,ii,il,in,ipar,ipar1,irot,
* iter,i1,i2,i3,j,jrot,j1,j2,k,l,la,lf,lh,ll,lu,lv,lwest,l1,l2,
* l3,l4,ncof,ncoff,nvv,nv4,nreg,nrint,nrr,nr1,nuu,nu4,num,num1,
* numin,nvmin,rank,iband1, jlu
c ..local arrays..
real*8 hu(4),hv(4)
c ..function references..
real*8 abs,atan,cos,fprati,sin,sqrt
integer min0
c ..subroutine references..
c fporde,fpbspl,fpback,fpgivs,fprota,fprank,fpdisc,fprppo
c ..
c set constants
one = 1
two = 2
three = 3
ten = 10
half = 0.5e0
con1 = 0.1e0
con9 = 0.9e0
con4 = 0.4e-01
pi = atan(one)*4
pi2 = pi+pi
ipar = iopt2*(iopt2+3)/2
ipar1 = ipar+1
eps = sqrt(eta)
if(iopt1.lt.0) go to 90
numin = 9
nvmin = 9+iopt2*(iopt2+1)
c calculation of acc, the absolute tolerance for the root of f(p)=s.
acc = tol*s
if(iopt1.eq.0) go to 10
if(s.lt.sup) then
if (nv.lt.nvmin) go to 70
go to 90
endif
c if iopt1 = 0 we begin by computing the weighted least-squares
c polymomial of the form
c s(u,v) = f(1)*(1-u**3)+f(2)*u**3+f(3)*(u**2-u**3)+f(4)*(u-u**3)
c where f(4) = 0 if iopt2> 0 , f(3) = 0 if iopt2 > 1 and
c f(2) = 0 if iopt3> 0.
c the corresponding weighted sum of squared residuals gives the upper
c bound sup for the smoothing factor s.
10 sup = 0.
do 20 i=1,4
f(i) = 0.
do 20 j=1,4
a(i,j) = 0.
20 continue
do 50 i=1,m
wi = w(i)
zi = z(i)*wi
uu = u(i)
u2 = uu*uu
u3 = uu*u2
h(1) = (one-u3)*wi
h(2) = u3*wi
h(3) = u2*(one-uu)*wi
h(4) = uu*(one-u2)*wi
if(iopt3.ne.0) h(2) = 0.
if(iopt2.gt.1) h(3) = 0.
if(iopt2.gt.0) h(4) = 0.
do 40 j=1,4
piv = h(j)
if(piv.eq.0.) go to 40
call fpgivs(piv,a(j,1),co,si)
call fprota(co,si,zi,f(j))
if(j.eq.4) go to 40
j1 = j+1
j2 = 1
do 30 l=j1,4
j2 = j2+1
call fprota(co,si,h(l),a(j,j2))
30 continue
40 continue
sup = sup+zi*zi
50 continue
if(a(4,1).ne.0.) f(4) = f(4)/a(4,1)
if(a(3,1).ne.0.) f(3) = (f(3)-a(3,2)*f(4))/a(3,1)
if(a(2,1).ne.0.) f(2) = (f(2)-a(2,2)*f(3)-a(2,3)*f(4))/a(2,1)
if(a(1,1).ne.0.)
* f(1) = (f(1)-a(1,2)*f(2)-a(1,3)*f(3)-a(1,4)*f(4))/a(1,1)
c find the b-spline representation of this least-squares polynomial
c1 = f(1)
c4 = f(2)
c2 = f(4)/three+c1
c3 = (f(3)+two*f(4))/three+c1
nu = 8
nv = 8
do 60 i=1,4
c(i) = c1
c(i+4) = c2
c(i+8) = c3
c(i+12) = c4
tu(i) = 0.
tu(i+4) = one
rn = 2*i-9
tv(i) = rn*pi
rn = 2*i-1
tv(i+4) = rn*pi
60 continue
fp = sup
c test whether the least-squares polynomial is an acceptable solution
fpms = sup-s
if(fpms.lt.acc) go to 960
c test whether we cannot further increase the number of knots.
70 if(nuest.lt.numin .or. nvest.lt.nvmin) go to 950
c find the initial set of interior knots of the spline in case iopt1=0.
nu = numin
nv = nvmin
tu(5) = half
nvv = nv-8
rn = nvv+1
fac = pi2/rn
do 80 i=1,nvv
rn = i
tv(i+4) = rn*fac-pi
80 continue
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 1 : computation of least-squares bicubic splines. c
c ****************************************************** c
c if iopt1<0 we compute the least-squares bicubic spline according c
c to the given set of knots. c
c if iopt1>=0 we compute least-squares bicubic splines with in- c
c creasing numbers of knots until the corresponding sum f(p=inf)<=s. c
c the initial set of knots then depends on the value of iopt1 c
c if iopt1=0 we start with one interior knot in the u-direction c
c (0.5) and 1+iopt2*(iopt2+1) in the v-direction. c
c if iopt1>0 we start with the set of knots found at the last c
c call of the routine. c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c main loop for the different sets of knots. m is a save upper bound
c for the number of trials.
90 do 570 iter=1,m
c find the position of the additional knots which are needed for the
c b-spline representation of s(u,v).
l1 = 4
l2 = l1
l3 = nv-3
l4 = l3
tv(l2) = -pi
tv(l3) = pi
do 120 i=1,3
l1 = l1+1
l2 = l2-1
l3 = l3+1
l4 = l4-1
tv(l2) = tv(l4)-pi2
tv(l3) = tv(l1)+pi2
120 continue
l = nu
do 130 i=1,4
tu(i) = 0.
tu(l) = one
l = l-1
130 continue
c find nrint, the total number of knot intervals and nreg, the number
c of panels in which the approximation domain is subdivided by the
c intersection of knots.
nuu = nu-7
nvv = nv-7
nrr = nvv/2
nr1 = nrr+1
nrint = nuu+nvv
nreg = nuu*nvv
c arrange the data points according to the panel they belong to.
call fporde(u,v,m,3,3,tu,nu,tv,nv,nummer,index,nreg)
if(iopt2.eq.0) go to 195
c find the b-spline coefficients cosi of the cubic spline
c approximations for cr(v)=rad(v)*cos(v) and sr(v) = rad(v)*sin(v)
c if iopt2=1, and additionally also for cr(v)**2,sr(v)**2 and
c 2*cr(v)*sr(v) if iopt2=2
do 140 i=1,nvv
do 135 j=1,ipar
cosi(j,i) = 0.
135 continue
do 140 j=1,nvv
a(i,j) = 0.
140 continue
c the coefficients cosi are obtained from interpolation conditions
c at the knots tv(i),i=4,5,...nv-4.
do 175 i=1,nvv
l2 = i+3
arg = tv(l2)
call fpbspl(tv,nv,3,arg,l2,hv)
do 145 j=1,nvv
row(j) = 0.
145 continue
ll = i
do 150 j=1,3
if(ll.gt.nvv) ll= 1
row(ll) = row(ll)+hv(j)
ll = ll+1
150 continue
co = cos(arg)
si = sin(arg)
r = rad(arg)
cs(1) = co*r
cs(2) = si*r
if(iopt2.eq.1) go to 155
cs(3) = cs(1)*cs(1)
cs(4) = cs(2)*cs(2)
cs(5) = cs(1)*cs(2)
155 do 170 j=1,nvv
piv = row(j)
if(piv.eq.0.) go to 170
call fpgivs(piv,a(j,1),co,si)
do 160 l=1,ipar
call fprota(co,si,cs(l),cosi(l,j))
160 continue
if(j.eq.nvv) go to 175
j1 = j+1
j2 = 1
do 165 l=j1,nvv
j2 = j2+1
call fprota(co,si,row(l),a(j,j2))
165 continue
170 continue
175 continue
do 190 l=1,ipar
do 180 j=1,nvv
cs(j) = cosi(l,j)
180 continue
call fpback(a,cs,nvv,nvv,cs,ncc)
do 185 j=1,nvv
cosi(l,j) = cs(j)
185 continue
190 continue
c find ncof, the dimension of the spline and ncoff, the number
c of coefficients in the standard b-spline representation.
195 nu4 = nu-4
nv4 = nv-4
ncoff = nu4*nv4
ncof = ipar1+nvv*(nu4-1-iopt2-iopt3)
c find the bandwidth of the observation matrix a.
iband = 4*nvv
if(nuu-iopt2-iopt3.le.1) iband = ncof
iband1 = iband-1
c initialize the observation matrix a.
do 200 i=1,ncof
f(i) = 0.
do 200 j=1,iband
a(i,j) = 0.
200 continue
c initialize the sum of squared residuals.
fp = 0.
ratio = one+tu(6)/tu(5)
c fetch the data points in the new order. main loop for the
c different panels.
do 380 num=1,nreg
c fix certain constants for the current panel; jrot records the column
c number of the first non-zero element in a row of the observation
c matrix according to a data point of the panel.
num1 = num-1
lu = num1/nvv
l1 = lu+4
lv = num1-lu*nvv+1
l2 = lv+3
jrot = 0
if(lu.gt.iopt2) jrot = ipar1+(lu-iopt2-1)*nvv
lu = lu+1
c test whether there are still data points in the current panel.
in = index(num)
210 if(in.eq.0) go to 380
c fetch a new data point.
wi = w(in)
zi = z(in)*wi
c evaluate for the u-direction, the 4 non-zero b-splines at u(in)
call fpbspl(tu,nu,3,u(in),l1,hu)
c evaluate for the v-direction, the 4 non-zero b-splines at v(in)
call fpbspl(tv,nv,3,v(in),l2,hv)
c store the value of these b-splines in spu and spv resp.
do 220 i=1,4
spu(in,i) = hu(i)
spv(in,i) = hv(i)
220 continue
c initialize the new row of observation matrix.
do 240 i=1,iband
h(i) = 0.
240 continue
c calculate the non-zero elements of the new row by making the cross
c products of the non-zero b-splines in u- and v-direction and
c by taking into account the conditions of the splines.
do 250 i=1,nvv
row(i) = 0.
250 continue
c take into account the periodicity condition of the bicubic splines.
ll = lv
do 260 i=1,4
if(ll.gt.nvv) ll=1
row(ll) = row(ll)+hv(i)
ll = ll+1
260 continue
c take into account the other conditions of the splines.
if(iopt2.eq.0 .or. lu.gt.iopt2+1) go to 280
do 270 l=1,ipar
cs(l) = 0.
do 270 i=1,nvv
cs(l) = cs(l)+row(i)*cosi(l,i)
270 continue
c fill in the non-zero elements of the new row.
280 j1 = 0
do 330 j =1,4
jlu = j+lu
huj = hu(j)
if(jlu.gt.iopt2+2) go to 320
go to (290,290,300,310),jlu
290 h(1) = huj
j1 = 1
go to 330
300 h(1) = h(1)+huj
h(2) = huj*cs(1)
h(3) = huj*cs(2)
j1 = 3
go to 330
310 h(1) = h(1)+huj
h(2) = h(2)+huj*ratio*cs(1)
h(3) = h(3)+huj*ratio*cs(2)
h(4) = huj*cs(3)
h(5) = huj*cs(4)
h(6) = huj*cs(5)
j1 = 6
go to 330
320 if(jlu.gt.nu4 .and. iopt3.ne.0) go to 330
do 325 i=1,nvv
j1 = j1+1
h(j1) = row(i)*huj
325 continue
330 continue
do 335 i=1,iband
h(i) = h(i)*wi
335 continue
c rotate the row into triangle by givens transformations.
irot = jrot
do 350 i=1,iband
irot = irot+1
piv = h(i)
if(piv.eq.0.) go to 350
c calculate the parameters of the givens transformation.
call fpgivs(piv,a(irot,1),co,si)
c apply that transformation to the right hand side.
call fprota(co,si,zi,f(irot))
if(i.eq.iband) go to 360
c apply that transformation to the left hand side.
i2 = 1
i3 = i+1
do 340 j=i3,iband
i2 = i2+1
call fprota(co,si,h(j),a(irot,i2))
340 continue
350 continue
c add the contribution of the row to the sum of squares of residual
c right hand sides.
360 fp = fp+zi**2
c find the number of the next data point in the panel.
in = nummer(in)
go to 210
380 continue
c find dmax, the maximum value for the diagonal elements in the reduced
c triangle.
dmax = 0.
do 390 i=1,ncof
if(a(i,1).le.dmax) go to 390
dmax = a(i,1)
390 continue
c check whether the observation matrix is rank deficient.
sigma = eps*dmax
do 400 i=1,ncof
if(a(i,1).le.sigma) go to 410
400 continue
c backward substitution in case of full rank.
call fpback(a,f,ncof,iband,c,ncc)
rank = ncof
do 405 i=1,ncof
q(i,1) = a(i,1)/dmax
405 continue
go to 430
c in case of rank deficiency, find the minimum norm solution.
410 lwest = ncof*iband+ncof+iband
if(lwrk.lt.lwest) go to 925
lf = 1
lh = lf+ncof
la = lh+iband
do 420 i=1,ncof
ff(i) = f(i)
do 420 j=1,iband
q(i,j) = a(i,j)
420 continue
call fprank(q,ff,ncof,iband,ncc,sigma,c,sq,rank,wrk(la),
* wrk(lf),wrk(lh))
do 425 i=1,ncof
q(i,1) = q(i,1)/dmax
425 continue
c add to the sum of squared residuals, the contribution of reducing
c the rank.
fp = fp+sq
c find the coefficients in the standard b-spline representation of
c the spline.
430 call fprppo(nu,nv,iopt2,iopt3,cosi,ratio,c,ff,ncoff)
c test whether the least-squares spline is an acceptable solution.
if(iopt1.lt.0) then
if (fp.le.0) go to 970
go to 980
endif
fpms = fp-s
if(abs(fpms).le.acc) then
if (fp.le.0) go to 970
go to 980
endif
c if f(p=inf) < s, accept the choice of knots.
if(fpms.lt.0.) go to 580
c test whether we cannot further increase the number of knots
if(m.lt.ncof) go to 935
c search where to add a new knot.
c find for each interval the sum of squared residuals fpint for the
c data points having the coordinate belonging to that knot interval.
c calculate also coord which is the same sum, weighted by the position
c of the data points considered.
do 450 i=1,nrint
fpint(i) = 0.
coord(i) = 0.
450 continue
do 490 num=1,nreg
num1 = num-1
lu = num1/nvv
l1 = lu+1
lv = num1-lu*nvv
l2 = lv+1+nuu
jrot = lu*nv4+lv
in = index(num)
460 if(in.eq.0) go to 490
store = 0.
i1 = jrot
do 480 i=1,4
hui = spu(in,i)
j1 = i1
do 470 j=1,4
j1 = j1+1
store = store+hui*spv(in,j)*c(j1)
470 continue
i1 = i1+nv4
480 continue
store = (w(in)*(z(in)-store))**2
fpint(l1) = fpint(l1)+store
coord(l1) = coord(l1)+store*u(in)
fpint(l2) = fpint(l2)+store
coord(l2) = coord(l2)+store*v(in)
in = nummer(in)
go to 460
490 continue
c bring together the information concerning knot panels which are
c symmetric with respect to the origin.
do 495 i=1,nrr
l1 = nuu+i
l2 = l1+nrr
fpint(l1) = fpint(l1)+fpint(l2)
coord(l1) = coord(l1)+coord(l2)-pi*fpint(l2)
495 continue
c find the interval for which fpint is maximal on the condition that
c there still can be added a knot.
l1 = 1
l2 = nuu+nrr
if(nuest.lt.nu+1) l1=nuu+1
if(nvest.lt.nv+2) l2=nuu
c test whether we cannot further increase the number of knots.
if(l1.gt.l2) go to 950
500 fpmax = 0.
l = 0
do 510 i=l1,l2
if(fpmax.ge.fpint(i)) go to 510
l = i
fpmax = fpint(i)
510 continue
if(l.eq.0) go to 930
c calculate the position of the new knot.
arg = coord(l)/fpint(l)
c test in what direction the new knot is going to be added.
if(l.gt.nuu) go to 530
c addition in the u-direction
l4 = l+4
fpint(l) = 0.
fac1 = tu(l4)-arg
fac2 = arg-tu(l4-1)
if(fac1.gt.(ten*fac2) .or. fac2.gt.(ten*fac1)) go to 500
j = nu
do 520 i=l4,nu
tu(j+1) = tu(j)
j = j-1
520 continue
tu(l4) = arg
nu = nu+1
go to 570
c addition in the v-direction
530 l4 = l+4-nuu
fpint(l) = 0.
fac1 = tv(l4)-arg
fac2 = arg-tv(l4-1)
if(fac1.gt.(ten*fac2) .or. fac2.gt.(ten*fac1)) go to 500
ll = nrr+4
j = ll
do 550 i=l4,ll
tv(j+1) = tv(j)
j = j-1
550 continue
tv(l4) = arg
nv = nv+2
nrr = nrr+1
do 560 i=5,ll
j = i+nrr
tv(j) = tv(i)+pi
560 continue
c restart the computations with the new set of knots.
570 continue
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c part 2: determination of the smoothing bicubic spline. c
c ****************************************************** c
c we have determined the number of knots and their position. we now c
c compute the coefficients of the smoothing spline sp(u,v). c
c the observation matrix a is extended by the rows of a matrix, expres-c
c sing that sp(u,v) must be a constant function in the variable c
c v and a cubic polynomial in the variable u. the corresponding c
c weights of these additional rows are set to 1/(p). iteratively c
c we than have to determine the value of p such that f(p) = sum((w(i)* c
c (z(i)-sp(u(i),v(i))))**2) be = s. c
c we already know that the least-squares polynomial corresponds to p=0,c
c and that the least-squares bicubic spline corresponds to p=infin. c
c the iteration process makes use of rational interpolation. since f(p)c
c is a convex and strictly decreasing function of p, it can be approx- c
c imated by a rational function of the form r(p) = (u*p+v)/(p+w). c
c three values of p (p1,p2,p3) with corresponding values of f(p) (f1= c
c f(p1)-s,f2=f(p2)-s,f3=f(p3)-s) are used to calculate the new value c
c of p such that r(p)=s. convergence is guaranteed by taking f1>0,f3<0.c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c evaluate the discontinuity jumps of the 3-th order derivative of
c the b-splines at the knots tu(l),l=5,...,nu-4.
580 call fpdisc(tu,nu,5,bu,nuest)
c evaluate the discontinuity jumps of the 3-th order derivative of
c the b-splines at the knots tv(l),l=5,...,nv-4.
call fpdisc(tv,nv,5,bv,nvest)
c initial value for p.
p1 = 0.
f1 = sup-s
p3 = -one
f3 = fpms
p = 0.
do 590 i=1,ncof
p = p+a(i,1)
590 continue
rn = ncof
p = rn/p
c find the bandwidth of the extended observation matrix.
iband4 = iband+ipar1
if(iband4.gt.ncof) iband4 = ncof
iband3 = iband4 -1
ich1 = 0
ich3 = 0
nuu = nu4-iopt3-1
c iteration process to find the root of f(p)=s.
do 920 iter=1,maxit
pinv = one/p
c store the triangularized observation matrix into q.
do 630 i=1,ncof
ff(i) = f(i)
do 620 j=1,iband4
q(i,j) = 0.
620 continue
do 630 j=1,iband
q(i,j) = a(i,j)
630 continue
c extend the observation matrix with the rows of a matrix, expressing
c that for u=constant sp(u,v) must be a constant function.
do 720 i=5,nv4
ii = i-4
do 635 l=1,nvv
row(l) = 0.
635 continue
ll = ii
do 640 l=1,5
if(ll.gt.nvv) ll=1
row(ll) = row(ll)+bv(ii,l)
ll = ll+1
640 continue
do 720 j=1,nuu
c initialize the new row.
do 645 l=1,iband
h(l) = 0.
645 continue
c fill in the non-zero elements of the row. jrot records the column
c number of the first non-zero element in the row.
if(j.gt.iopt2) go to 665
if(j.eq.2) go to 655
do 650 k=1,2
cs(k) = 0.
do 650 l=1,nvv
cs(k) = cs(k)+cosi(k,l)*row(l)
650 continue
h(1) = cs(1)
h(2) = cs(2)
jrot = 2
go to 675
655 do 660 k=3,5
cs(k) = 0.
do 660 l=1,nvv
cs(k) = cs(k)+cosi(k,l)*row(l)
660 continue
h(1) = cs(1)*ratio
h(2) = cs(2)*ratio
h(3) = cs(3)
h(4) = cs(4)
h(5) = cs(5)
jrot = 2
go to 675
665 do 670 l=1,nvv
h(l) = row(l)
670 continue
jrot = ipar1+1+(j-iopt2-1)*nvv
675 do 677 l=1,iband
h(l) = h(l)*pinv
677 continue
zi = 0.
c rotate the new row into triangle by givens transformations.
do 710 irot=jrot,ncof
piv = h(1)
i2 = min0(iband1,ncof-irot)
if(piv.eq.0.) then
if (i2.le.0) go to 720
go to 690
endif
c calculate the parameters of the givens transformation.
call fpgivs(piv,q(irot,1),co,si)
c apply that givens transformation to the right hand side.
call fprota(co,si,zi,ff(irot))
if(i2.eq.0) go to 720
c apply that givens transformation to the left hand side.
do 680 l=1,i2
l1 = l+1
call fprota(co,si,h(l1),q(irot,l1))
680 continue
690 do 700 l=1,i2
h(l) = h(l+1)
700 continue
h(i2+1) = 0.
710 continue
720 continue
c extend the observation matrix with the rows of a matrix expressing
c that for v=constant. sp(u,v) must be a cubic polynomial.
do 810 i=5,nu4
ii = i-4
do 810 j=1,nvv
c initialize the new row
do 730 l=1,iband4
h(l) = 0.
730 continue
c fill in the non-zero elements of the row. jrot records the column
c number of the first non-zero element in the row.
j1 = 1
do 760 l=1,5
il = ii+l-1
if(il.eq.nu4 .and. iopt3.ne.0) go to 760
if(il.gt.iopt2+1) go to 750
go to (735,740,745),il
735 h(1) = bu(ii,l)
j1 = j+1
go to 760
740 h(1) = h(1)+bu(ii,l)
h(2) = bu(ii,l)*cosi(1,j)
h(3) = bu(ii,l)*cosi(2,j)
j1 = j+3
go to 760
745 h(1) = h(1)+bu(ii,l)
h(2) = bu(ii,l)*cosi(1,j)*ratio
h(3) = bu(ii,l)*cosi(2,j)*ratio
h(4) = bu(ii,l)*cosi(3,j)
h(5) = bu(ii,l)*cosi(4,j)
h(6) = bu(ii,l)*cosi(5,j)
j1 = j+6
go to 760
750 h(j1) = bu(ii,l)
j1 = j1+nvv
760 continue
do 765 l=1,iband4
h(l) = h(l)*pinv
765 continue
zi = 0.
jrot = 1
if(ii.gt.iopt2+1) jrot = ipar1+(ii-iopt2-2)*nvv+j
c rotate the new row into triangle by givens transformations.
do 800 irot=jrot,ncof
piv = h(1)
i2 = min0(iband3,ncof-irot)
if(piv.eq.0.) then
if (i2.le.0) go to 810
go to 780
endif
c calculate the parameters of the givens transformation.
call fpgivs(piv,q(irot,1),co,si)
c apply that givens transformation to the right hand side.
call fprota(co,si,zi,ff(irot))
if(i2.eq.0) go to 810
c apply that givens transformation to the left hand side.
do 770 l=1,i2
l1 = l+1
call fprota(co,si,h(l1),q(irot,l1))
770 continue
780 do 790 l=1,i2
h(l) = h(l+1)
790 continue
h(i2+1) = 0.
800 continue
810 continue
c find dmax, the maximum value for the diagonal elements in the
c reduced triangle.
dmax = 0.
do 820 i=1,ncof
if(q(i,1).le.dmax) go to 820
dmax = q(i,1)
820 continue
c check whether the matrix is rank deficient.
sigma = eps*dmax
do 830 i=1,ncof
if(q(i,1).le.sigma) go to 840
830 continue
c backward substitution in case of full rank.
call fpback(q,ff,ncof,iband4,c,ncc)
rank = ncof
go to 845
c in case of rank deficiency, find the minimum norm solution.
840 lwest = ncof*iband4+ncof+iband4
if(lwrk.lt.lwest) go to 925
lf = 1
lh = lf+ncof
la = lh+iband4
call fprank(q,ff,ncof,iband4,ncc,sigma,c,sq,rank,wrk(la),
* wrk(lf),wrk(lh))
845 do 850 i=1,ncof
q(i,1) = q(i,1)/dmax
850 continue
c find the coefficients in the standard b-spline representation of
c the polar spline.
call fprppo(nu,nv,iopt2,iopt3,cosi,ratio,c,ff,ncoff)
c compute f(p).
fp = 0.
do 890 num = 1,nreg
num1 = num-1
lu = num1/nvv
lv = num1-lu*nvv
jrot = lu*nv4+lv
in = index(num)
860 if(in.eq.0) go to 890
store = 0.
i1 = jrot
do 880 i=1,4
hui = spu(in,i)
j1 = i1
do 870 j=1,4
j1 = j1+1
store = store+hui*spv(in,j)*c(j1)
870 continue
i1 = i1+nv4
880 continue
fp = fp+(w(in)*(z(in)-store))**2
in = nummer(in)
go to 860
890 continue
c test whether the approximation sp(u,v) is an acceptable solution
fpms = fp-s
if(abs(fpms).le.acc) go to 980
c test whether the maximum allowable number of iterations has been
c reached.
if(iter.eq.maxit) go to 940
c carry out one more step of the iteration process.
p2 = p
f2 = fpms
if(ich3.ne.0) go to 900
if((f2-f3).gt.acc) go to 895
c our initial choice of p is too large.
p3 = p2
f3 = f2
p = p*con4
if(p.le.p1) p = p1*con9 + p2*con1
go to 920
895 if(f2.lt.0.) ich3 = 1
900 if(ich1.ne.0) go to 910
if((f1-f2).gt.acc) go to 905
c our initial choice of p is too small
p1 = p2
f1 = f2
p = p/con4
if(p3.lt.0.) go to 920
if(p.ge.p3) p = p2*con1 +p3*con9
go to 920
905 if(f2.gt.0.) ich1 = 1
c test whether the iteration process proceeds as theoretically
c expected.
910 if(f2.ge.f1 .or. f2.le.f3) go to 945
c find the new value of p.
p = fprati(p1,f1,p2,f2,p3,f3)
920 continue
c error codes and messages.
925 ier = lwest
go to 990
930 ier = 5
go to 990
935 ier = 4
go to 990
940 ier = 3
go to 990
945 ier = 2
go to 990
950 ier = 1
go to 990
960 ier = -2
go to 990
970 ier = -1
fp = 0.
980 if(ncof.ne.rank) ier = -rank
990 return
end