start developing of FITPACK C++ bindings mount_server.cpp: fix compilation error with GCC15
140 lines
4.2 KiB
Fortran
140 lines
4.2 KiB
Fortran
recursive subroutine splev(t,n,c,nc,k,x,y,m,e,ier)
|
|
c subroutine splev evaluates in a number of points x(i),i=1,2,...,m
|
|
c a spline s(x) of degree k, given in its b-spline representation.
|
|
c
|
|
c calling sequence:
|
|
c call splev(t,n,c,nc,k,x,y,m,e,ier)
|
|
c
|
|
c input parameters:
|
|
c t : array,length n, which contains the position of the knots.
|
|
c n : integer, giving the total number of knots of s(x).
|
|
c c : array,length nc, containing the b-spline coefficients.
|
|
c the length of the array, nc >= n - k -1.
|
|
c further coefficients are ignored.
|
|
c k : integer, giving the degree of s(x).
|
|
c x : array,length m, which contains the points where s(x) must
|
|
c be evaluated.
|
|
c m : integer, giving the number of points where s(x) must be
|
|
c evaluated.
|
|
c e : integer, if 0 the spline is extrapolated from the end
|
|
c spans for points not in the support, if 1 the spline
|
|
c evaluates to zero for those points, if 2 ier is set to
|
|
c 1 and the subroutine returns, and if 3 the spline evaluates
|
|
c to the value of the nearest boundary point.
|
|
c
|
|
c output parameter:
|
|
c y : array,length m, giving the value of s(x) at the different
|
|
c points.
|
|
c ier : error flag
|
|
c ier = 0 : normal return
|
|
c ier = 1 : argument out of bounds and e == 2
|
|
c ier =10 : invalid input data (see restrictions)
|
|
c
|
|
c restrictions:
|
|
c m >= 1
|
|
c-- t(k+1) <= x(i) <= x(i+1) <= t(n-k) , i=1,2,...,m-1.
|
|
c
|
|
c other subroutines required: fpbspl.
|
|
c
|
|
c references :
|
|
c de boor c : on calculating with b-splines, j. approximation theory
|
|
c 6 (1972) 50-62.
|
|
c cox m.g. : the numerical evaluation of b-splines, j. inst. maths
|
|
c applics 10 (1972) 134-149.
|
|
c dierckx p. : curve and surface fitting with splines, monographs on
|
|
c numerical analysis, oxford university press, 1993.
|
|
c
|
|
c author :
|
|
c p.dierckx
|
|
c dept. computer science, k.u.leuven
|
|
c celestijnenlaan 200a, b-3001 heverlee, belgium.
|
|
c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
|
|
c
|
|
c latest update : march 1987
|
|
c
|
|
c++ pearu: 11 aug 2003
|
|
c++ - disabled cliping x values to interval [min(t),max(t)]
|
|
c++ - removed the restriction of the orderness of x values
|
|
c++ - fixed initialization of sp to double precision value
|
|
c
|
|
c ..scalar arguments..
|
|
integer n, k, m, e, ier
|
|
c ..array arguments..
|
|
real*8 t(n), c(nc), x(m), y(m)
|
|
c ..local scalars..
|
|
integer i, j, k1, l, ll, l1, nk1
|
|
c++..
|
|
integer k2
|
|
c..++
|
|
real*8 arg, sp, tb, te
|
|
c ..local array..
|
|
real*8 h(20)
|
|
c ..
|
|
c before starting computations a data check is made. if the input data
|
|
c are invalid control is immediately repassed to the calling program.
|
|
ier = 10
|
|
c-- if(m-1) 100,30,10
|
|
c++..
|
|
if (m .lt. 1) go to 100
|
|
c..++
|
|
c-- 10 do 20 i=2,m
|
|
c-- if(x(i).lt.x(i-1)) go to 100
|
|
c-- 20 continue
|
|
ier = 0
|
|
c fetch tb and te, the boundaries of the approximation interval.
|
|
k1 = k + 1
|
|
c++..
|
|
k2 = k1 + 1
|
|
c..++
|
|
nk1 = n - k1
|
|
tb = t(k1)
|
|
te = t(nk1 + 1)
|
|
l = k1
|
|
l1 = l + 1
|
|
c main loop for the different points.
|
|
do 80 i = 1, m
|
|
c fetch a new x-value arg.
|
|
arg = x(i)
|
|
c check if arg is in the support
|
|
if (arg .lt. tb .or. arg .gt. te) then
|
|
if (e .eq. 0) then
|
|
goto 35
|
|
else if (e .eq. 1) then
|
|
y(i) = 0
|
|
goto 80
|
|
else if (e .eq. 2) then
|
|
ier = 1
|
|
goto 100
|
|
else if (e .eq. 3) then
|
|
if (arg .lt. tb) then
|
|
arg = tb
|
|
else
|
|
arg = te
|
|
endif
|
|
endif
|
|
endif
|
|
c search for knot interval t(l) <= arg < t(l+1)
|
|
c++..
|
|
35 if (arg .ge. t(l) .or. l1 .eq. k2) go to 40
|
|
l1 = l
|
|
l = l - 1
|
|
go to 35
|
|
c..++
|
|
40 if(arg .lt. t(l1) .or. l .eq. nk1) go to 50
|
|
l = l1
|
|
l1 = l + 1
|
|
go to 40
|
|
c evaluate the non-zero b-splines at arg.
|
|
50 call fpbspl(t, n, k, arg, l, h)
|
|
c find the value of s(x) at x=arg.
|
|
sp = 0.0d0
|
|
ll = l - k1
|
|
do 60 j = 1, k1
|
|
ll = ll + 1
|
|
sp = sp + c(ll)*h(j)
|
|
60 continue
|
|
y(i) = sp
|
|
80 continue
|
|
100 return
|
|
end
|