start developing of FITPACK C++ bindings mount_server.cpp: fix compilation error with GCC15
415 lines
21 KiB
Fortran
415 lines
21 KiB
Fortran
recursive subroutine surfit(iopt,m,x,y,z,w,xb,xe,yb,ye,kx,ky,s,
|
|
* nxest,nyest,nmax,eps,nx,tx,ny,ty,c,fp,wrk1,lwrk1,wrk2,lwrk2,
|
|
* iwrk,kwrk,ier)
|
|
implicit none
|
|
c given the set of data points (x(i),y(i),z(i)) and the set of positive
|
|
c numbers w(i),i=1,...,m, subroutine surfit determines a smooth bivar-
|
|
c iate spline approximation s(x,y) of degrees kx and ky on the rect-
|
|
c angle xb <= x <= xe, yb <= y <= ye.
|
|
c if iopt = -1 surfit calculates the weighted least-squares spline
|
|
c according to a given set of knots.
|
|
c if iopt >= 0 the total numbers nx and ny of these knots and their
|
|
c position tx(j),j=1,...,nx and ty(j),j=1,...,ny are chosen automatic-
|
|
c ally by the routine. the smoothness of s(x,y) is then achieved by
|
|
c minimalizing the discontinuity jumps in the derivatives of s(x,y)
|
|
c across the boundaries of the subpanels (tx(i),tx(i+1))*(ty(j),ty(j+1).
|
|
c the amounth of smoothness is determined by the condition that f(p) =
|
|
c sum ((w(i)*(z(i)-s(x(i),y(i))))**2) be <= s, with s a given non-neg-
|
|
c ative constant, called the smoothing factor.
|
|
c the fit is given in the b-spline representation (b-spline coefficients
|
|
c c((ny-ky-1)*(i-1)+j),i=1,...,nx-kx-1;j=1,...,ny-ky-1) and can be eval-
|
|
c uated by means of subroutine bispev.
|
|
c
|
|
c calling sequence:
|
|
c call surfit(iopt,m,x,y,z,w,xb,xe,yb,ye,kx,ky,s,nxest,nyest,
|
|
c * nmax,eps,nx,tx,ny,ty,c,fp,wrk1,lwrk1,wrk2,lwrk2,iwrk,kwrk,ier)
|
|
c
|
|
c parameters:
|
|
c iopt : integer flag. on entry iopt must specify whether a weighted
|
|
c least-squares spline (iopt=-1) or a smoothing spline (iopt=0
|
|
c or 1) must be determined.
|
|
c if iopt=0 the routine will start with an initial set of knots
|
|
c tx(i)=xb,tx(i+kx+1)=xe,i=1,...,kx+1;ty(i)=yb,ty(i+ky+1)=ye,i=
|
|
c 1,...,ky+1. if iopt=1 the routine will continue with the set
|
|
c of knots found at the last call of the routine.
|
|
c attention: a call with iopt=1 must always be immediately pre-
|
|
c ceded by another call with iopt=1 or iopt=0.
|
|
c unchanged on exit.
|
|
c m : integer. on entry m must specify the number of data points.
|
|
c m >= (kx+1)*(ky+1). unchanged on exit.
|
|
c x : real array of dimension at least (m).
|
|
c y : real array of dimension at least (m).
|
|
c z : real array of dimension at least (m).
|
|
c before entry, x(i),y(i),z(i) must be set to the co-ordinates
|
|
c of the i-th data point, for i=1,...,m. the order of the data
|
|
c points is immaterial. unchanged on exit.
|
|
c w : real array of dimension at least (m). before entry, w(i) must
|
|
c be set to the i-th value in the set of weights. the w(i) must
|
|
c be strictly positive. unchanged on exit.
|
|
c xb,xe : real values. on entry xb,xe,yb and ye must specify the bound-
|
|
c yb,ye aries of the rectangular approximation domain.
|
|
c xb<=x(i)<=xe,yb<=y(i)<=ye,i=1,...,m. unchanged on exit.
|
|
c kx,ky : integer values. on entry kx and ky must specify the degrees
|
|
c of the spline. 1<=kx,ky<=5. it is recommended to use bicubic
|
|
c (kx=ky=3) splines. unchanged on exit.
|
|
c s : real. on entry (in case iopt>=0) s must specify the smoothing
|
|
c factor. s >=0. unchanged on exit.
|
|
c for advice on the choice of s see further comments
|
|
c nxest : integer. unchanged on exit.
|
|
c nyest : integer. unchanged on exit.
|
|
c on entry, nxest and nyest must specify an upper bound for the
|
|
c number of knots required in the x- and y-directions respect.
|
|
c these numbers will also determine the storage space needed by
|
|
c the routine. nxest >= 2*(kx+1), nyest >= 2*(ky+1).
|
|
c in most practical situation nxest = kx+1+sqrt(m/2), nyest =
|
|
c ky+1+sqrt(m/2) will be sufficient. see also further comments.
|
|
c nmax : integer. on entry nmax must specify the actual dimension of
|
|
c the arrays tx and ty. nmax >= nxest, nmax >=nyest.
|
|
c unchanged on exit.
|
|
c eps : real.
|
|
c on entry, eps must specify a threshold for determining the
|
|
c effective rank of an over-determined linear system of equat-
|
|
c ions. 0 < eps < 1. if the number of decimal digits in the
|
|
c computer representation of a real number is q, then 10**(-q)
|
|
c is a suitable value for eps in most practical applications.
|
|
c unchanged on exit.
|
|
c nx : integer.
|
|
c unless ier=10 (in case iopt >=0), nx will contain the total
|
|
c number of knots with respect to the x-variable, of the spline
|
|
c approximation returned. if the computation mode iopt=1 is
|
|
c used, the value of nx should be left unchanged between sub-
|
|
c sequent calls.
|
|
c in case iopt=-1, the value of nx should be specified on entry
|
|
c tx : real array of dimension nmax.
|
|
c on successful exit, this array will contain the knots of the
|
|
c spline with respect to the x-variable, i.e. the position of
|
|
c the interior knots tx(kx+2),...,tx(nx-kx-1) as well as the
|
|
c position of the additional knots tx(1)=...=tx(kx+1)=xb and
|
|
c tx(nx-kx)=...=tx(nx)=xe needed for the b-spline representat.
|
|
c if the computation mode iopt=1 is used, the values of tx(1),
|
|
c ...,tx(nx) should be left unchanged between subsequent calls.
|
|
c if the computation mode iopt=-1 is used, the values tx(kx+2),
|
|
c ...tx(nx-kx-1) must be supplied by the user, before entry.
|
|
c see also the restrictions (ier=10).
|
|
c ny : integer.
|
|
c unless ier=10 (in case iopt >=0), ny will contain the total
|
|
c number of knots with respect to the y-variable, of the spline
|
|
c approximation returned. if the computation mode iopt=1 is
|
|
c used, the value of ny should be left unchanged between sub-
|
|
c sequent calls.
|
|
c in case iopt=-1, the value of ny should be specified on entry
|
|
c ty : real array of dimension nmax.
|
|
c on successful exit, this array will contain the knots of the
|
|
c spline with respect to the y-variable, i.e. the position of
|
|
c the interior knots ty(ky+2),...,ty(ny-ky-1) as well as the
|
|
c position of the additional knots ty(1)=...=ty(ky+1)=yb and
|
|
c ty(ny-ky)=...=ty(ny)=ye needed for the b-spline representat.
|
|
c if the computation mode iopt=1 is used, the values of ty(1),
|
|
c ...,ty(ny) should be left unchanged between subsequent calls.
|
|
c if the computation mode iopt=-1 is used, the values ty(ky+2),
|
|
c ...ty(ny-ky-1) must be supplied by the user, before entry.
|
|
c see also the restrictions (ier=10).
|
|
c c : real array of dimension at least (nxest-kx-1)*(nyest-ky-1).
|
|
c on successful exit, c contains the coefficients of the spline
|
|
c approximation s(x,y)
|
|
c fp : real. unless ier=10, fp contains the weighted sum of
|
|
c squared residuals of the spline approximation returned.
|
|
c wrk1 : real array of dimension (lwrk1). used as workspace.
|
|
c if the computation mode iopt=1 is used the value of wrk1(1)
|
|
c should be left unchanged between subsequent calls.
|
|
c on exit wrk1(2),wrk1(3),...,wrk1(1+(nx-kx-1)*(ny-ky-1)) will
|
|
c contain the values d(i)/max(d(i)),i=1,...,(nx-kx-1)*(ny-ky-1)
|
|
c with d(i) the i-th diagonal element of the reduced triangular
|
|
c matrix for calculating the b-spline coefficients. it includes
|
|
c those elements whose square is less than eps,which are treat-
|
|
c ed as 0 in the case of presumed rank deficiency (ier<-2).
|
|
c lwrk1 : integer. on entry lwrk1 must specify the actual dimension of
|
|
c the array wrk1 as declared in the calling (sub)program.
|
|
c lwrk1 must not be too small. let
|
|
c u = nxest-kx-1, v = nyest-ky-1, km = max(kx,ky)+1,
|
|
c ne = max(nxest,nyest), bx = kx*v+ky+1, by = ky*u+kx+1,
|
|
c if(bx.le.by) b1 = bx, b2 = b1+v-ky
|
|
c if(bx.gt.by) b1 = by, b2 = b1+u-kx then
|
|
c lwrk1 >= u*v*(2+b1+b2)+2*(u+v+km*(m+ne)+ne-kx-ky)+b2+1
|
|
c wrk2 : real array of dimension (lwrk2). used as workspace, but
|
|
c only in the case a rank deficient system is encountered.
|
|
c lwrk2 : integer. on entry lwrk2 must specify the actual dimension of
|
|
c the array wrk2 as declared in the calling (sub)program.
|
|
c lwrk2 > 0 . a save upper boundfor lwrk2 = u*v*(b2+1)+b2
|
|
c where u,v and b2 are as above. if there are enough data
|
|
c points, scattered uniformly over the approximation domain
|
|
c and if the smoothing factor s is not too small, there is a
|
|
c good chance that this extra workspace is not needed. a lot
|
|
c of memory might therefore be saved by setting lwrk2=1.
|
|
c (see also ier > 10)
|
|
c iwrk : integer array of dimension (kwrk). used as workspace.
|
|
c kwrk : integer. on entry kwrk must specify the actual dimension of
|
|
c the array iwrk as declared in the calling (sub)program.
|
|
c kwrk >= m+(nxest-2*kx-1)*(nyest-2*ky-1).
|
|
c ier : integer. unless the routine detects an error, ier contains a
|
|
c non-positive value on exit, i.e.
|
|
c ier=0 : normal return. the spline returned has a residual sum of
|
|
c squares fp such that abs(fp-s)/s <= tol with tol a relat-
|
|
c ive tolerance set to 0.001 by the program.
|
|
c ier=-1 : normal return. the spline returned is an interpolating
|
|
c spline (fp=0).
|
|
c ier=-2 : normal return. the spline returned is the weighted least-
|
|
c squares polynomial of degrees kx and ky. in this extreme
|
|
c case fp gives the upper bound for the smoothing factor s.
|
|
c ier<-2 : warning. the coefficients of the spline returned have been
|
|
c computed as the minimal norm least-squares solution of a
|
|
c (numerically) rank deficient system. (-ier) gives the rank.
|
|
c especially if the rank deficiency which can be computed as
|
|
c (nx-kx-1)*(ny-ky-1)+ier, is large the results may be inac-
|
|
c curate. they could also seriously depend on the value of
|
|
c eps.
|
|
c ier=1 : error. the required storage space exceeds the available
|
|
c storage space, as specified by the parameters nxest and
|
|
c nyest.
|
|
c probably causes : nxest or nyest too small. if these param-
|
|
c eters are already large, it may also indicate that s is
|
|
c too small
|
|
c the approximation returned is the weighted least-squares
|
|
c spline according to the current set of knots.
|
|
c the parameter fp gives the corresponding weighted sum of
|
|
c squared residuals (fp>s).
|
|
c ier=2 : error. a theoretically impossible result was found during
|
|
c the iteration process for finding a smoothing spline with
|
|
c fp = s. probably causes : s too small or badly chosen eps.
|
|
c there is an approximation returned but the corresponding
|
|
c weighted sum of squared residuals does not satisfy the
|
|
c condition abs(fp-s)/s < tol.
|
|
c ier=3 : error. the maximal number of iterations maxit (set to 20
|
|
c by the program) allowed for finding a smoothing spline
|
|
c with fp=s has been reached. probably causes : s too small
|
|
c there is an approximation returned but the corresponding
|
|
c weighted sum of squared residuals does not satisfy the
|
|
c condition abs(fp-s)/s < tol.
|
|
c ier=4 : error. no more knots can be added because the number of
|
|
c b-spline coefficients (nx-kx-1)*(ny-ky-1) already exceeds
|
|
c the number of data points m.
|
|
c probably causes : either s or m too small.
|
|
c the approximation returned is the weighted least-squares
|
|
c spline according to the current set of knots.
|
|
c the parameter fp gives the corresponding weighted sum of
|
|
c squared residuals (fp>s).
|
|
c ier=5 : error. no more knots can be added because the additional
|
|
c knot would (quasi) coincide with an old one.
|
|
c probably causes : s too small or too large a weight to an
|
|
c inaccurate data point.
|
|
c the approximation returned is the weighted least-squares
|
|
c spline according to the current set of knots.
|
|
c the parameter fp gives the corresponding weighted sum of
|
|
c squared residuals (fp>s).
|
|
c ier=10 : error. on entry, the input data are controlled on validity
|
|
c the following restrictions must be satisfied.
|
|
c -1<=iopt<=1, 1<=kx,ky<=5, m>=(kx+1)*(ky+1), nxest>=2*kx+2,
|
|
c nyest>=2*ky+2, 0<eps<1, nmax>=nxest, nmax>=nyest,
|
|
c xb<=x(i)<=xe, yb<=y(i)<=ye, w(i)>0, i=1,...,m
|
|
c lwrk1 >= u*v*(2+b1+b2)+2*(u+v+km*(m+ne)+ne-kx-ky)+b2+1
|
|
c kwrk >= m+(nxest-2*kx-1)*(nyest-2*ky-1)
|
|
c if iopt=-1: 2*kx+2<=nx<=nxest
|
|
c xb<tx(kx+2)<tx(kx+3)<...<tx(nx-kx-1)<xe
|
|
c 2*ky+2<=ny<=nyest
|
|
c yb<ty(ky+2)<ty(ky+3)<...<ty(ny-ky-1)<ye
|
|
c if iopt>=0: s>=0
|
|
c if one of these conditions is found to be violated,control
|
|
c is immediately repassed to the calling program. in that
|
|
c case there is no approximation returned.
|
|
c ier>10 : error. lwrk2 is too small, i.e. there is not enough work-
|
|
c space for computing the minimal least-squares solution of
|
|
c a rank deficient system of linear equations. ier gives the
|
|
c requested value for lwrk2. there is no approximation re-
|
|
c turned but, having saved the information contained in nx,
|
|
c ny,tx,ty,wrk1, and having adjusted the value of lwrk2 and
|
|
c the dimension of the array wrk2 accordingly, the user can
|
|
c continue at the point the program was left, by calling
|
|
c surfit with iopt=1.
|
|
c
|
|
c further comments:
|
|
c by means of the parameter s, the user can control the tradeoff
|
|
c between closeness of fit and smoothness of fit of the approximation.
|
|
c if s is too large, the spline will be too smooth and signal will be
|
|
c lost ; if s is too small the spline will pick up too much noise. in
|
|
c the extreme cases the program will return an interpolating spline if
|
|
c s=0 and the weighted least-squares polynomial (degrees kx,ky)if s is
|
|
c very large. between these extremes, a properly chosen s will result
|
|
c in a good compromise between closeness of fit and smoothness of fit.
|
|
c to decide whether an approximation, corresponding to a certain s is
|
|
c satisfactory the user is highly recommended to inspect the fits
|
|
c graphically.
|
|
c recommended values for s depend on the weights w(i). if these are
|
|
c taken as 1/d(i) with d(i) an estimate of the standard deviation of
|
|
c z(i), a good s-value should be found in the range (m-sqrt(2*m),m+
|
|
c sqrt(2*m)). if nothing is known about the statistical error in z(i)
|
|
c each w(i) can be set equal to one and s determined by trial and
|
|
c error, taking account of the comments above. the best is then to
|
|
c start with a very large value of s ( to determine the least-squares
|
|
c polynomial and the corresponding upper bound fp0 for s) and then to
|
|
c progressively decrease the value of s ( say by a factor 10 in the
|
|
c beginning, i.e. s=fp0/10, fp0/100,...and more carefully as the
|
|
c approximation shows more detail) to obtain closer fits.
|
|
c to choose s very small is strongly discouraged. this considerably
|
|
c increases computation time and memory requirements. it may also
|
|
c cause rank-deficiency (ier<-2) and endager numerical stability.
|
|
c to economize the search for a good s-value the program provides with
|
|
c different modes of computation. at the first call of the routine, or
|
|
c whenever he wants to restart with the initial set of knots the user
|
|
c must set iopt=0.
|
|
c if iopt=1 the program will continue with the set of knots found at
|
|
c the last call of the routine. this will save a lot of computation
|
|
c time if surfit is called repeatedly for different values of s.
|
|
c the number of knots of the spline returned and their location will
|
|
c depend on the value of s and on the complexity of the shape of the
|
|
c function underlying the data. if the computation mode iopt=1
|
|
c is used, the knots returned may also depend on the s-values at
|
|
c previous calls (if these were smaller). therefore, if after a number
|
|
c of trials with different s-values and iopt=1, the user can finally
|
|
c accept a fit as satisfactory, it may be worthwhile for him to call
|
|
c surfit once more with the selected value for s but now with iopt=0.
|
|
c indeed, surfit may then return an approximation of the same quality
|
|
c of fit but with fewer knots and therefore better if data reduction
|
|
c is also an important objective for the user.
|
|
c the number of knots may also depend on the upper bounds nxest and
|
|
c nyest. indeed, if at a certain stage in surfit the number of knots
|
|
c in one direction (say nx) has reached the value of its upper bound
|
|
c (nxest), then from that moment on all subsequent knots are added
|
|
c in the other (y) direction. this may indicate that the value of
|
|
c nxest is too small. on the other hand, it gives the user the option
|
|
c of limiting the number of knots the routine locates in any direction
|
|
c for example, by setting nxest=2*kx+2 (the lowest allowable value for
|
|
c nxest), the user can indicate that he wants an approximation which
|
|
c is a simple polynomial of degree kx in the variable x.
|
|
c
|
|
c other subroutines required:
|
|
c fpback,fpbspl,fpsurf,fpdisc,fpgivs,fprank,fprati,fprota,fporde
|
|
c
|
|
c references:
|
|
c dierckx p. : an algorithm for surface fitting with spline functions
|
|
c ima j. numer. anal. 1 (1981) 267-283.
|
|
c dierckx p. : an algorithm for surface fitting with spline functions
|
|
c report tw50, dept. computer science,k.u.leuven, 1980.
|
|
c dierckx p. : curve and surface fitting with splines, monographs on
|
|
c numerical analysis, oxford university press, 1993.
|
|
c
|
|
c author:
|
|
c p.dierckx
|
|
c dept. computer science, k.u. leuven
|
|
c celestijnenlaan 200a, b-3001 heverlee, belgium.
|
|
c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
|
|
c
|
|
c creation date : may 1979
|
|
c latest update : march 1987
|
|
c
|
|
c ..
|
|
c ..scalar arguments..
|
|
real*8 xb,xe,yb,ye,s,eps,fp
|
|
integer iopt,m,kx,ky,nxest,nyest,nmax,nx,ny,lwrk1,lwrk2,kwrk,ier
|
|
c ..array arguments..
|
|
real*8 x(m),y(m),z(m),w(m),tx(nmax),ty(nmax),
|
|
* c((nxest-kx-1)*(nyest-ky-1)),wrk1(lwrk1),wrk2(lwrk2)
|
|
integer iwrk(kwrk)
|
|
c ..local scalars..
|
|
real*8 tol
|
|
integer i,ib1,ib3,jb1,ki,kmax,km1,km2,kn,kwest,kx1,ky1,la,lbx,
|
|
* lby,lco,lf,lff,lfp,lh,lq,lsx,lsy,lwest,maxit,ncest,nest,nek,
|
|
* nminx,nminy,nmx,nmy,nreg,nrint,nxk,nyk
|
|
c ..function references..
|
|
integer max0
|
|
c ..subroutine references..
|
|
c fpsurf
|
|
c ..
|
|
c we set up the parameters tol and maxit.
|
|
maxit = 20
|
|
tol = 0.1e-02
|
|
c before starting computations a data check is made. if the input data
|
|
c are invalid,control is immediately repassed to the calling program.
|
|
ier = 10
|
|
if(eps.le.0. .or. eps.ge.1.) go to 71
|
|
if(kx.le.0 .or. kx.gt.5) go to 71
|
|
kx1 = kx+1
|
|
if(ky.le.0 .or. ky.gt.5) go to 71
|
|
ky1 = ky+1
|
|
kmax = max0(kx,ky)
|
|
km1 = kmax+1
|
|
km2 = km1+1
|
|
if(iopt.lt.(-1) .or. iopt.gt.1) go to 71
|
|
if(m.lt.(kx1*ky1)) go to 71
|
|
nminx = 2*kx1
|
|
if(nxest.lt.nminx .or. nxest.gt.nmax) go to 71
|
|
nminy = 2*ky1
|
|
if(nyest.lt.nminy .or. nyest.gt.nmax) go to 71
|
|
nest = max0(nxest,nyest)
|
|
nxk = nxest-kx1
|
|
nyk = nyest-ky1
|
|
ncest = nxk*nyk
|
|
nmx = nxest-nminx+1
|
|
nmy = nyest-nminy+1
|
|
nrint = nmx+nmy
|
|
nreg = nmx*nmy
|
|
ib1 = kx*nyk+ky1
|
|
jb1 = ky*nxk+kx1
|
|
ib3 = kx1*nyk+1
|
|
if(ib1.le.jb1) go to 10
|
|
ib1 = jb1
|
|
ib3 = ky1*nxk+1
|
|
10 lwest = ncest*(2+ib1+ib3)+2*(nrint+nest*km2+m*km1)+ib3
|
|
kwest = m+nreg
|
|
if(lwrk1.lt.lwest .or. kwrk.lt.kwest) go to 71
|
|
if(xb.ge.xe .or. yb.ge.ye) go to 71
|
|
do 20 i=1,m
|
|
if(w(i).le.0.) go to 70
|
|
if(x(i).lt.xb .or. x(i).gt.xe) go to 71
|
|
if(y(i).lt.yb .or. y(i).gt.ye) go to 71
|
|
20 continue
|
|
if(iopt.ge.0) go to 50
|
|
if(nx.lt.nminx .or. nx.gt.nxest) go to 71
|
|
nxk = nx-kx1
|
|
tx(kx1) = xb
|
|
tx(nxk+1) = xe
|
|
do 30 i=kx1,nxk
|
|
if(tx(i+1).le.tx(i)) go to 72
|
|
30 continue
|
|
if(ny.lt.nminy .or. ny.gt.nyest) go to 71
|
|
nyk = ny-ky1
|
|
ty(ky1) = yb
|
|
ty(nyk+1) = ye
|
|
do 40 i=ky1,nyk
|
|
if(ty(i+1).le.ty(i)) go to 73
|
|
40 continue
|
|
go to 60
|
|
50 if(s.lt.0.) go to 71
|
|
60 ier = 0
|
|
c we partition the working space and determine the spline approximation
|
|
kn = 1
|
|
ki = kn+m
|
|
lq = 2
|
|
la = lq+ncest*ib3
|
|
lf = la+ncest*ib1
|
|
lff = lf+ncest
|
|
lfp = lff+ncest
|
|
lco = lfp+nrint
|
|
lh = lco+nrint
|
|
lbx = lh+ib3
|
|
nek = nest*km2
|
|
lby = lbx+nek
|
|
lsx = lby+nek
|
|
lsy = lsx+m*km1
|
|
call fpsurf(iopt,m,x,y,z,w,xb,xe,yb,ye,kx,ky,s,nxest,nyest,
|
|
* eps,tol,maxit,nest,km1,km2,ib1,ib3,ncest,nrint,nreg,nx,tx,
|
|
* ny,ty,c,fp,wrk1(1),wrk1(lfp),wrk1(lco),wrk1(lf),wrk1(lff),
|
|
* wrk1(la),wrk1(lq),wrk1(lbx),wrk1(lby),wrk1(lsx),wrk1(lsy),
|
|
* wrk1(lh),iwrk(ki),iwrk(kn),wrk2,lwrk2,ier)
|
|
70 return
|
|
71 print*,"iopt,kx,ky,m=",iopt,kx,ky,m
|
|
print*,"nxest,nyest,nmax=",nxest,nyest,nmax
|
|
print*,"lwrk1,lwrk2,kwrk=",lwrk1,lwrk2,kwrk
|
|
print*,"xb,xe,yb,ye=",xb,xe,yb,ye
|
|
print*,"eps,s",eps,s
|
|
return
|
|
72 print*,"tx=",tx
|
|
return
|
|
73 print*,"ty=",ty
|
|
return
|
|
end
|