mountcontrol/mcc/mcc_generics.h
2025-09-12 12:53:05 +03:00

934 lines
35 KiB
C++

#pragma once
/* MOUNT CONTROL COMPONENTS LIBRARY */
/* SOME LIBRARY-WIDE DECLARATIONS */
#include <chrono>
#include <concepts>
// #include "mcc_traits.h"
#include "mcc_angle.h"
#include "mcc_finite_state_machine.h"
namespace mcc
{
static constexpr double mcc_sideral_to_UT1_ratio = 1.002737909350795; // sideral/UT1
// mount construction type (only the most common ones)
enum class MccMountType : uint8_t { GERMAN_TYPE, FORK_TYPE, CROSSAXIS_TYPE, ALTAZ_TYPE };
template <MccMountType TYPE>
static constexpr std::string_view MccMountTypeStr = TYPE == MccMountType::GERMAN_TYPE ? "GERMAN"
: TYPE == MccMountType::FORK_TYPE ? "FORK"
: TYPE == MccMountType::CROSSAXIS_TYPE ? "CROSSAXIS"
: TYPE == MccMountType::ALTAZ_TYPE ? "ALTAZ"
: "UNKNOWN";
template <MccMountType TYPE>
static constexpr bool mcc_is_equatorial_mount = TYPE == MccMountType::GERMAN_TYPE ? true
: TYPE == MccMountType::FORK_TYPE ? true
: TYPE == MccMountType::CROSSAXIS_TYPE ? true
: TYPE == MccMountType::ALTAZ_TYPE ? false
: false;
template <MccMountType TYPE>
static constexpr bool mcc_is_altaz_mount = TYPE == MccMountType::GERMAN_TYPE ? false
: TYPE == MccMountType::FORK_TYPE ? false
: TYPE == MccMountType::CROSSAXIS_TYPE ? false
: TYPE == MccMountType::ALTAZ_TYPE ? true
: false;
static consteval bool mccIsEquatorialMount(const MccMountType type)
{
return type == MccMountType::GERMAN_TYPE ? true
: type == MccMountType::FORK_TYPE ? true
: type == MccMountType::CROSSAXIS_TYPE ? true
: type == MccMountType::ALTAZ_TYPE ? false
: false;
};
static consteval bool mccIsAltAzMount(const MccMountType type)
{
return type == MccMountType::GERMAN_TYPE ? false
: type == MccMountType::FORK_TYPE ? false
: type == MccMountType::CROSSAXIS_TYPE ? false
: type == MccMountType::ALTAZ_TYPE ? true
: false;
};
enum class MccProhibitedZonePolicy : int {
PZ_POLICY_STOP, // stop mount near the zone
PZ_POLICY_FLIP // flip mount, e.g., near the meridian, near HA-axis encoder limit switch
};
/* GENERIC LOGGER CLASS CONCEPT */
template <typename T>
concept mcc_logger_c = requires(T t, const T t_const) {
{ t.logError(std::declval<const std::string&>()) };
{ t.logDebug(std::declval<const std::string&>()) };
{ t.logWarn(std::declval<const std::string&>()) };
{ t.logInfo(std::declval<const std::string&>()) };
};
struct MccNullLogger {
void logError(const std::string&) {}
void logDebug(const std::string&) {}
void logWarn(const std::string&) {}
void logInfo(const std::string&) {}
};
/* FLOATING-POINT LIKE CLASS CONCEPT */
template <typename T>
concept mcc_fp_type_like_c =
std::floating_point<T> ||
(std::convertible_to<T, double> && std::constructible_from<T, double> && std::default_initializable<T>);
/* ANGLE REPRESENTATION CLASS CONCEPT */
template <typename T>
concept mcc_angle_c = mcc_fp_type_like_c<T> && requires(T v, double vd) {
// mandatory arithmetic operations
{ v + v } -> std::same_as<T>;
{ v - v } -> std::same_as<T>;
{ v += v } -> std::same_as<T&>;
{ v -= v } -> std::same_as<T&>;
{ vd + v } -> std::same_as<T>;
{ vd - v } -> std::same_as<T>;
{ v + vd } -> std::same_as<T>;
{ v - vd } -> std::same_as<T>;
{ v += vd } -> std::same_as<T&>;
{ v -= vd } -> std::same_as<T&>;
{ v * vd } -> std::same_as<T>;
{ v / vd } -> std::same_as<T>;
};
/* TIME POINT CLASS CONCEPT */
/*
* USE OF STL std::chrono::time_point
*/
template <typename T>
concept mcc_time_point_c = traits::mcc_systime_c<T>;
// concept mcc_time_point_c = requires(T t) { []<typename CT, typename DT>(std::chrono::time_point<CT, DT>) {}(t); };
template <mcc_time_point_c T1, mcc_time_point_c T2>
static constexpr void mcc_tp2tp(const T1& from_tp1, T2& to_tp)
{
to_tp = std::chrono::time_point_cast<typename T2::duration>(from_tp1);
}
/* JULIAN DAY CLASS CONCEPT */
template <typename T>
concept mcc_julday_c = mcc_fp_type_like_c<T> && requires(const T v) {
// modified Julian Day
{ v.MJD() } -> std::convertible_to<double>;
// comparison operators
v <=> v;
};
/* ERROR CLASS CONCEPT */
template <typename T>
concept mcc_error_c = std::default_initializable<T> && (std::convertible_to<T, bool> || requires(const T t) {
{ t.operator bool() };
(bool)T() == false; // default constucted value must be a "non-error"!
});
template <mcc_error_c ErrT, typename DErrT>
static constexpr ErrT mcc_deduce_error(const DErrT& err, const ErrT& default_err)
{
if constexpr (std::same_as<ErrT, DErrT>) {
return err;
} else {
return default_err;
}
}
/* ATMOSPHERIC REFRACTION MODEL CLASS CONCEPT */
template <typename T>
concept mcc_refract_model_c = requires(const T t_const) {
{ t_const.name() } -> std::formattable<char>;
};
/* CELESTIAL POINT WITH A PAIR OF COORDINATES CLASS CONCEPT */
template <typename T>
concept mcc_celestial_point_c = requires(T t) {
requires std::same_as<std::remove_const_t<decltype(t.pair_kind)>,
MccCoordPairKind>; // type of given coordinate pair (it may be even static constexpr value)
requires mcc_time_point_c<decltype(t.time_point)>; // time point for given coordinates
requires mcc_angle_c<decltype(t.X)>; // co-longitude (X-axis)
requires mcc_angle_c<decltype(t.Y)>; // co-latitude (Y-axis)
};
static constexpr void mcc_copy_celestial_point(mcc_celestial_point_c auto const& from_pt,
mcc_celestial_point_c auto* to_pt)
{
if (to_pt == nullptr) {
return;
}
using from_pt_t = std::remove_cvref_t<decltype(from_pt)>;
using to_pt_t = std::remove_cvref_t<decltype(*to_pt)>;
if constexpr (std::derived_from<to_pt_t, from_pt_t> && std::copyable<to_pt_t>) {
*to_pt = from_pt;
return;
}
to_pt->pair_kind = from_pt.pair_kind;
to_pt->time_point =
std::chrono::time_point_cast<typename decltype(to_pt->time_point)::duration>(from_pt.time_point);
to_pt->X = (double)from_pt.X;
to_pt->Y = (double)from_pt.Y;
}
/* CELESTIAL POINT WITH APPARENT EQUATORIAL AND HORIZONTAL CLASS CONCEPT */
template <typename T>
concept mcc_eqt_hrz_coord_c = mcc_celestial_point_c<T> && requires(T t) {
requires mcc_angle_c<decltype(t.RA_APP)>; // right ascension
requires mcc_angle_c<decltype(t.DEC_APP)>; // declination
requires mcc_angle_c<decltype(t.HA)>; // hour angle
requires mcc_angle_c<decltype(t.AZ)>; // azimuth (NOTE: ASSUMING THE AZINUTH IS COUNTED FROM THE SOUTH THROUGH THE
// WEST!!!)
requires mcc_angle_c<decltype(t.ZD)>; // zenithal distance
requires mcc_angle_c<decltype(t.ALT)>; // altitude
};
static constexpr void mcc_copy_eqt_hrz_coord(mcc_eqt_hrz_coord_c auto const& from_pt, mcc_eqt_hrz_coord_c auto* to_pt)
{
if (to_pt == nullptr) {
return;
}
using from_pt_t = std::remove_cvref_t<decltype(from_pt)>;
using to_pt_t = std::remove_cvref_t<decltype(*to_pt)>;
if constexpr (std::derived_from<to_pt_t, from_pt_t> && std::copyable<to_pt_t>) {
*to_pt = from_pt;
return;
}
to_pt->pair_kind = from_pt.pair_kind;
to_pt->time_point =
std::chrono::time_point_cast<typename decltype(to_pt->time_point)::duration>(from_pt.time_point);
to_pt->X = (double)from_pt.X;
to_pt->Y = (double)from_pt.Y;
to_pt->RA_APP = (double)from_pt.RA_APP;
to_pt->DEC_APP = (double)from_pt.DEC_APP;
to_pt->HA = (double)from_pt.HA;
to_pt->AZ = (double)from_pt.AZ;
to_pt->ZD = (double)from_pt.ZD;
to_pt->ALT = (double)from_pt.ALT;
}
/* CELESTIAL COORDINATES TRANSFORMATION ENGINE */
template <mcc_error_c RetT>
struct mcc_CCTE_interface_t {
virtual ~mcc_CCTE_interface_t() = default;
template <std::derived_from<mcc_CCTE_interface_t> SelfT>
RetT timepointToJulday(this SelfT&& self, mcc_time_point_c auto tp, mcc_julday_c auto* julday)
{
return std::forward<SelfT>(self).timepointToJulday(std::move(tp), julday);
}
// APPARENT SIDERAL TIME
template <std::derived_from<mcc_CCTE_interface_t> SelfT>
RetT timepointToAppSideral(this SelfT&& self, mcc_time_point_c auto tp, mcc_angle_c auto* st, bool islocal = false)
{
return std::forward<SelfT>(self).timepointToAppSideral(std::move(tp), st, islocal);
}
template <std::derived_from<mcc_CCTE_interface_t> SelfT>
RetT juldayToAppSideral(this SelfT&& self, mcc_julday_c auto jd, mcc_angle_c auto* st, bool islocal = false)
{
return std::forward<SelfT>(self).timepointToAppSideral(std::move(jd), st, islocal);
}
// NOTE: ASSUMING THE AZINUTH IS COUNTED FROM THE SOUTH THROUGH THE WEST!!!
template <std::derived_from<mcc_CCTE_interface_t> SelfT>
RetT transformCoordinates(this SelfT&& self, mcc_celestial_point_c auto from_pt, mcc_celestial_point_c auto* to_pt)
{
return std::forward<SelfT>(self).transformCoordinates(std::move(from_pt), to_pt);
}
// NOTE: ASSUMING THE AZIMUTH IS COUNTED FROM THE SOUTH THROUGH THE WEST!!!
template <std::derived_from<mcc_CCTE_interface_t> SelfT>
RetT transformCoordinates(this SelfT&& self, mcc_celestial_point_c auto from_pt, mcc_eqt_hrz_coord_c auto* to_pt)
{
return std::forward<SelfT>(self).transformCoordinates(std::move(from_pt), to_pt);
}
template <std::derived_from<mcc_CCTE_interface_t> SelfT>
RetT parallacticAngle(this SelfT&& self, mcc_celestial_point_c auto pt, mcc_angle_c auto* pa)
{
return std::forward<SelfT>(self).parallacticAngle(std::move(pt), pa);
}
template <std::derived_from<mcc_CCTE_interface_t> SelfT>
RetT refractionCorrection(this SelfT&& self, mcc_celestial_point_c auto pt, mcc_angle_c auto* dZ)
{
return std::forward<SelfT>(self).refractionCoeff(std::move(pt), dZ);
}
protected:
mcc_CCTE_interface_t() = default;
};
template <typename T>
concept mcc_ccte_c = std::derived_from<T, mcc_CCTE_interface_t<typename T::error_t>> && requires(const T t_const, T t) {
{ t_const.nameCCTE() } -> std::formattable<char>;
requires mcc_refract_model_c<typename T::refract_model_t>;
{ t.refractionModel(std::declval<typename T::refract_model_t*>()) } -> std::same_as<typename T::error_t>;
};
/* POINTING CORRECTION MODEL CLASS CONCEPT */
template <typename T>
concept mcc_PCM_result_c = requires(T t) {
requires mcc_angle_c<decltype(t.pcmX)>;
requires mcc_angle_c<decltype(t.pcmY)>;
};
template <mcc_error_c RetT>
struct mcc_PCM_interface_t {
virtual ~mcc_PCM_interface_t() = default;
// ignore app_pt->pair_kind and time points!!!
template <std::derived_from<mcc_PCM_interface_t> SelfT>
RetT computePCM(this SelfT&& self,
mcc_celestial_point_c auto pt,
mcc_PCM_result_c auto* result,
mcc_celestial_point_c auto* app_pt)
{
return std::forward<SelfT>(self).computePCM(std::move(pt), result, app_pt);
}
// for equatorial mounts the method must compute:
// app_pt->HA = pt.X + result->pcmX
// app_pt->DEC_APP = pt.Y + result->pcmY
// for alt-azimuthal:
// app_pt->AZ = pt.X + result->pcmX
// app_pt->ZD = pt.Y + result->pcmY
template <std::derived_from<mcc_PCM_interface_t> SelfT>
RetT computePCM(this SelfT&& self,
mcc_celestial_point_c auto pt,
mcc_PCM_result_c auto* result,
mcc_eqt_hrz_coord_c auto* app_pt)
{
return std::forward<SelfT>(self).computePCM(std::move(pt), result, app_pt);
}
template <std::derived_from<mcc_PCM_interface_t> SelfT>
RetT computeInversePCM(this SelfT&& self,
mcc_celestial_point_c auto app_pt,
mcc_PCM_result_c auto* inv_result,
mcc_celestial_point_c auto* hw_pt)
{
return std::forward<SelfT>(self).computePCM(std::move(app_pt), inv_result, hw_pt);
}
// NOTE: for computation of the corrections the method must use of app_pt.X and app_pt.Y
//
// for equatorial mounts the method must compute:
// hw_pt->X = app_pt.HA + inv_result.pcmX
// hw_pt->Y = app_pt.DEC_APP + inv_result.pcmY
// and inputs for the corrections computing are app_pt.HA and app_pt.DEC_APP
// for alt-azimuthal:
// hw_pt->X = app_pt.AZ + inv_result.pcmX
// hw_pt->Y = app_pt.ZD + inv_result.pcmY
// and inputs for the corrections computing are app_pt.ZA and app_pt.ZD
template <std::derived_from<mcc_PCM_interface_t> SelfT>
RetT computeInversePCM(this SelfT&& self,
mcc_eqt_hrz_coord_c auto app_pt,
mcc_PCM_result_c auto* inv_result,
mcc_celestial_point_c auto* hw_pt)
{
return std::forward<SelfT>(self).computePCM(std::move(app_pt), inv_result, hw_pt);
}
protected:
mcc_PCM_interface_t() = default;
};
template <typename T>
concept mcc_PCM_c = std::derived_from<T, mcc_PCM_interface_t<typename T::error_t>> && requires {
// the 'T' class must contain static constexpr member of 'MccMountType' type
requires std::same_as<decltype(T::mountType), const MccMountType>;
[]() {
static constexpr MccMountType val = T::mountType;
return val;
}(); // to ensure 'mountType' can be used in compile-time context
};
/* MOUNT HARDWARE ABSTRACTION CLASS CONCEPT */
template <typename T>
concept mcc_hardware_c = requires(T t, const T t_const) {
requires mcc_error_c<typename T::error_t>;
{ t_const.hardwareName() } -> std::formattable<char>;
// the 'T' class must contain static constexpr member of 'MccMountType' type
// requires std::same_as<decltype(T::mountType), const MccMountType>;
// []() {
// static constexpr MccMountType val = T::mountType;
// return val;
// }(); // to ensure 'mountType' can be used in compile-time context
// a type that defines at least HW_MOVE_ERROR, HW_MOVE_STOPPED, HW_MOVE_SLEWING, HW_MOVE_ADJUSTING, HW_MOVE_TRACKING
// and HW_MOVE_GUIDING compile-time constants. The main purpose of this type is a
// possible tunning of hardware hardwareSetState-related commands and detect stop-state
//
// e.g. an implementations can be as follows:
// enum class hardware_moving_state_t: int {HW_MOVE_ERROR = -1, HW_MOVE_STOPPED = 0, HW_MOVE_SLEWING,
// HW_MOVE_ADJUSTING, HW_MOVE_TRACKING, HW_MOVE_GUIDING}
//
// struct hardware_moving_state_t {
// uint16_t HW_MOVE_STOPPED = 0;
// uint16_t HW_MOVE_SLEWING = 111;
// uint16_t HW_MOVE_ADJUSTING = 222;
// uint16_t HW_MOVE_TRACKING = 333;
// uint16_t HW_MOVE_GUIDING = 444;
// uint16_t HW_MOVE_ERROR = 555;
// }
requires requires(typename T::hardware_moving_state_t type) {
[]() {
// mount axes were stopped
static constexpr auto v0 = T::hardware_moving_state_t::HW_MOVE_STOPPED;
// hardware was asked for slewing (move to given celestial point)
static constexpr auto v1 = T::hardware_moving_state_t::HW_MOVE_SLEWING;
// hardware was asked for adjusting after slewing
// (adjusting actual mount position to align with target celestial point at the end of slewing process)
static constexpr auto v2 = T::hardware_moving_state_t::HW_MOVE_ADJUSTING;
// hardware was asked for tracking (track target celestial point)
static constexpr auto v3 = T::hardware_moving_state_t::HW_MOVE_TRACKING;
// hardware was asked for guiding
// (small corrections to align actual mount position with target celestial point)
static constexpr auto v4 = T::hardware_moving_state_t::HW_MOVE_GUIDING;
// to detect possible hardware error
static constexpr auto v5 = T::hardware_moving_state_t::HW_MOVE_ERROR;
}();
};
// a class that contains at least time point of measurement, coordinates for x,y axes,
// its moving rates and moving type
requires mcc_celestial_point_c<typename T::hardware_state_t> && requires(typename T::hardware_state_t state) {
// requires mcc_time_point_c<decltype(state.time_point)>; // time point
// requires mcc_angle_c<decltype(state.X)>; // target or current co-longitude coordinate
// requires mcc_angle_c<decltype(state.Y)>; // target or current co-latitude coordinate
requires mcc_angle_c<decltype(state.speedX)>; // moving speed along co-longitude coordinate
requires mcc_angle_c<decltype(state.speedY)>; // moving speed along co-latitude coordinate
requires std::same_as<typename T::hardware_moving_state_t, decltype(state.moving_state)>;
};
// set hardware state:
// i.g. set positions (angles) of mount axes with given speeds
// NOTE: exact interpretation (or even ignoring) of the given moving speeds is subject of a hardware-class
// implementation, e.g. it can be maximal speeds at slewing ramp
{ t.hardwareSetState(std::declval<typename T::hardware_state_t>()) } -> std::same_as<typename T::error_t>;
// get current state
{ t.hardwareGetState(std::declval<typename T::hardware_state_t*>()) } -> std::same_as<typename T::error_t>;
{ t.hardwareStop() } -> std::same_as<typename T::error_t>; // stop any moving
{ t.hardwareInit() } -> std::same_as<typename T::error_t>; // initialize hardware
};
/* MOUNT TELEMETRY DATA CLASS CONCEPT */
template <typename T>
concept mcc_pointing_target_coord_c = mcc_eqt_hrz_coord_c<T> && requires(T t) {
requires mcc_angle_c<decltype(t.RA_ICRS)>; // ICRS right ascention
requires mcc_angle_c<decltype(t.DEC_ICRS)>; // ICRS declination
};
static constexpr void mcc_copy_pointing_target_coord(mcc_pointing_target_coord_c auto const& from_pt,
mcc_pointing_target_coord_c auto* to_pt)
{
if (to_pt == nullptr) {
return;
}
using from_pt_t = std::remove_cvref_t<decltype(from_pt)>;
using to_pt_t = std::remove_cvref_t<decltype(*to_pt)>;
if constexpr (std::derived_from<to_pt_t, from_pt_t> && std::copyable<to_pt_t>) {
*to_pt = from_pt;
return;
}
to_pt->pair_kind = from_pt.pair_kind;
to_pt->time_point =
std::chrono::time_point_cast<typename decltype(to_pt->time_point)::duration>(from_pt.time_point);
to_pt->X = (double)from_pt.X;
to_pt->Y = (double)from_pt.Y;
to_pt->RA_ICRS = (double)from_pt.RA_ICRS;
to_pt->DEC_ICRS = (double)from_pt.DEC_ICRS;
to_pt->RA_APP = (double)from_pt.RA_APP;
to_pt->DEC_APP = (double)from_pt.DEC_APP;
to_pt->HA = (double)from_pt.HA;
to_pt->AZ = (double)from_pt.AZ;
to_pt->ZD = (double)from_pt.ZD;
to_pt->ALT = (double)from_pt.ALT;
}
template <typename T>
concept mcc_telemetry_data_c = mcc_eqt_hrz_coord_c<T> && std::default_initializable<T> && requires(T t) {
// target target coordinates
requires mcc_pointing_target_coord_c<decltype(t.target)>;
// t.X and t.Y (from mcc_celestial_point_c) are encoder coordinates
// t.* from mcc_eqt_hrz_coord_c are apparent mount pointing coordinates
requires mcc_angle_c<decltype(t.speedX)>; // speed along X from hardware encoder
requires mcc_angle_c<decltype(t.speedY)>; // speed along Y from hardware encoder
// corrections to transform hardware encoder coordinates to apparent celestial ones
requires mcc_angle_c<decltype(t.pcmX)>; // PCM correction along X-axis
requires mcc_angle_c<decltype(t.pcmY)>; // PCM correction along Y-axis
// atmospheric refraction correction for current zenithal distance
requires mcc_angle_c<decltype(t.refCorr)>; // for current .ZD
};
static constexpr void mcc_copy_telemetry_data(mcc_telemetry_data_c auto const& from_pt,
mcc_telemetry_data_c auto* to_pt)
{
if (to_pt == nullptr) {
return;
}
using from_pt_t = std::remove_cvref_t<decltype(from_pt)>;
using to_pt_t = std::remove_cvref_t<decltype(*to_pt)>;
if constexpr (std::derived_from<to_pt_t, from_pt_t> && std::copyable<to_pt_t>) {
*to_pt = from_pt;
return;
}
to_pt->pair_kind = from_pt.pair_kind;
to_pt->time_point =
std::chrono::time_point_cast<typename decltype(to_pt->time_point)::duration>(from_pt.time_point);
to_pt->X = (double)from_pt.X;
to_pt->Y = (double)from_pt.Y;
to_pt->speedX = (double)from_pt.speedX;
to_pt->speedY = (double)from_pt.speedY;
to_pt->RA_APP = (double)from_pt.RA_APP;
to_pt->DEC_APP = (double)from_pt.DEC_APP;
to_pt->HA = (double)from_pt.HA;
to_pt->AZ = (double)from_pt.AZ;
to_pt->ZD = (double)from_pt.ZD;
to_pt->ALT = (double)from_pt.ALT;
to_pt->pcmX = (double)from_pt.pcmX;
to_pt->pcmY = (double)from_pt.pcmY;
to_pt->refCorr = (double)from_pt.refCorr;
mcc_copy_pointing_target_coord(from_pt.target, &to_pt->target);
}
/* MOUNT TELEMETRY MANAGER CLASS CONCEPT */
template <mcc_error_c RetT>
struct mcc_telemetry_interface_t {
virtual ~mcc_telemetry_interface_t() = default;
// update telemetry data right now
// an implementation is expected to update the data within the given 'timeout' time interval
// if not the method must return an appropriate timeout-error
template <std::derived_from<mcc_telemetry_interface_t> SelfT>
RetT updateTelemetryData(this SelfT&& self, traits::mcc_time_duration_c auto const& timeout)
{
return std::forward<SelfT>(self).updateTelemetryData(timeout);
}
// get current data
// an implementation is expected to return current, possibly already expired, telemetry data
// one should call consistently both 'updateTelemetryData' + 'telemetryData' methods
// to ensure that the data is up-to-date
template <std::derived_from<mcc_telemetry_interface_t> SelfT>
RetT telemetryData(this SelfT&& self, mcc_telemetry_data_c auto* data)
{
return std::forward<SelfT>(self).telemetryData(data);
}
// waiting for updated data
// an implementation is expected to block the current thread waiting for
// telemetry data to be updated (internal synchronization)
// if a timeout occured the method must return an appropriate timeout-error
template <std::derived_from<mcc_telemetry_interface_t> SelfT>
RetT waitForTelemetryData(this SelfT&& self,
mcc_telemetry_data_c auto* data,
traits::mcc_time_duration_c auto const& timeout)
{
return std::forward<SelfT>(self).waitForTelemetryData(data, timeout);
}
// set target coordinates
template <std::derived_from<mcc_telemetry_interface_t> SelfT>
RetT setPointingTarget(this SelfT&& self, mcc_celestial_point_c auto pt)
{
return std::forward<SelfT>(self).telemetryData(std::move(pt));
}
// compute difference in coordinates:
// dx = targetX - mountX
// dy = targetY - mountY
// where X and Y is in according to 'pair_kind' input parameter
template <std::derived_from<mcc_telemetry_interface_t> SelfT>
RetT targetToMountDiff(this SelfT&& self, MccCoordPairKind pair_kind, mcc_angle_c auto* dx, mcc_angle_c auto* dy)
{
std::forward<SelfT>(self).targetToMountDiff(pair_kind, dx, dy);
}
// compute distance between target and actual mount celestial points
template <std::derived_from<mcc_telemetry_interface_t> SelfT>
RetT targetToMountDist(this SelfT&& self, mcc_angle_c auto* dist)
{
std::forward<SelfT>(self).targetToMountDist(dist);
}
protected:
mcc_telemetry_interface_t() = default;
};
template <typename T>
concept mcc_telemetry_c = std::derived_from<T, mcc_telemetry_interface_t<typename T::error_t>>;
/* PROHIBITED ZONE CLASS CONCEPT */
template <mcc_error_c RetT>
struct mcc_pzone_interface_t {
virtual ~mcc_pzone_interface_t() = default;
template <std::derived_from<mcc_pzone_interface_t> SelfT, typename InputT>
RetT inPZone(this SelfT&& self, InputT coords, bool* result)
requires(mcc_eqt_hrz_coord_c<InputT> || mcc_celestial_point_c<InputT>) &&
requires { self.inPZone(coords, result); }
{
return std::forward<SelfT>(self).InPZone(std::move(coords), result);
}
template <std::derived_from<mcc_pzone_interface_t> SelfT, typename InputT>
RetT timeToPZone(this SelfT&& self, InputT coords, traits::mcc_time_duration_c auto* res_time)
requires(mcc_eqt_hrz_coord_c<InputT> || mcc_celestial_point_c<InputT>) &&
requires { self.timeToPZone(coords, res_time); }
{
return std::forward<SelfT>(self).timeToPZone(std::move(coords), res_time);
}
template <std::derived_from<mcc_pzone_interface_t> SelfT, typename InputT>
RetT timeFromPZone(this SelfT&& self, InputT coords, traits::mcc_time_duration_c auto* res_time)
requires(mcc_eqt_hrz_coord_c<InputT> || mcc_celestial_point_c<InputT>) &&
requires { self.timeFromPZone(coords, res_time); }
{
return std::forward<SelfT>(self).timeFromPZone(std::move(coords), res_time);
}
//
// NOTE: the method must return:
// point = mcc_celestial_point_c{.pair_kind = MccCoordPairKind::COORDS_KIND_GENERIC, .X = NaN, .Y = NaN}
// if there is no intersection with the zone for given coordinates!
template <std::derived_from<mcc_pzone_interface_t> SelfT, typename InputT, typename ResultT>
RetT intersectPZone(this SelfT&& self, InputT coords, ResultT* point)
requires((mcc_eqt_hrz_coord_c<InputT> || mcc_celestial_point_c<InputT>) &&
(mcc_eqt_hrz_coord_c<ResultT> || mcc_celestial_point_c<ResultT>)) &&
requires { self.intersectPZone(coords, point); }
{
return std::forward<SelfT>(self).intersectPZone(std::move(coords), point);
}
// template <std::derived_from<mcc_pzone_interface_t> SelfT, typename InputT>
// RetT intersectPZone(this SelfT&& self, InputT coords, mcc_celestial_point_c auto* point)
// requires(mcc_eqt_hrz_coord_c<InputT> || mcc_celestial_point_c<InputT>) &&
// requires { self.intersectPZone(coords, point); }
// {
// return std::forward<SelfT>(self).intersectPZone(std::move(coords), point);
// }
protected:
mcc_pzone_interface_t() = default;
};
template <typename T>
concept mcc_prohibited_zone_c =
std::derived_from<T, mcc_pzone_interface_t<typename T::error_t>> && requires(const T t_const) {
{ t_const.name() } -> std::formattable<char>;
// the 'T' class must contain static constexpr member of 'MccMountType' type
requires std::same_as<decltype(T::pzPolicy), const MccProhibitedZonePolicy>;
[]() {
static constexpr MccProhibitedZonePolicy val = T::pzPolicy;
return val;
}(); // to ensure 'pzPolicy' can be used in compile-time context
};
/* PROHIBITED ZONES CONTAINER CLASS CONCEPT */
template <mcc_error_c RetT>
struct mcc_pzone_container_interface_t {
virtual ~mcc_pzone_container_interface_t() = default;
template <std::derived_from<mcc_pzone_container_interface_t> SelfT>
size_t addPZone(this SelfT&& self, mcc_prohibited_zone_c auto zone)
{
return std::forward<SelfT>(self).addPZone(std::move(zone));
}
template <std::derived_from<mcc_pzone_container_interface_t> SelfT>
void clearPZones(this SelfT&& self)
{
return std::forward<SelfT>(self).clearPZones();
}
template <std::derived_from<mcc_pzone_container_interface_t> SelfT>
size_t sizePZones(this SelfT&& self)
{
return std::forward<SelfT>(self).sizePZones();
}
template <std::derived_from<mcc_pzone_container_interface_t> SelfT, typename InputT>
RetT inPZone(this SelfT&& self, InputT coords, bool* common_result, std::ranges::output_range<bool> auto* result)
requires(mcc_eqt_hrz_coord_c<InputT> || mcc_celestial_point_c<InputT>)
{
return std::forward<SelfT>(self).InPZone(std::move(coords), common_result, result);
}
template <std::derived_from<mcc_pzone_container_interface_t> SelfT, typename InputT, traits::mcc_time_duration_c DT>
RetT timeToPZone(this SelfT&& self, InputT coords, std::ranges::output_range<DT> auto* res_time)
requires(mcc_eqt_hrz_coord_c<InputT> || mcc_celestial_point_c<InputT>)
{
return std::forward<SelfT>(self).timeToPZone(std::move(coords), res_time);
}
template <std::derived_from<mcc_pzone_container_interface_t> SelfT, typename InputT, traits::mcc_time_duration_c DT>
RetT timeFromPZone(this SelfT&& self, InputT coords, std::ranges::output_range<DT> auto* res_time)
requires(mcc_eqt_hrz_coord_c<InputT> || mcc_celestial_point_c<InputT>)
{
return std::forward<SelfT>(self).timeFromPZone(std::move(coords), res_time);
}
// template <std::derived_from<mcc_pzone_container_interface_t> SelfT, typename InputT, mcc_celestial_point_c CPT>
// RetT intersectPZone(this SelfT&& self, InputT coords, std::ranges::output_range<CPT> auto* result)
// requires(mcc_eqt_hrz_coord_c<InputT> || mcc_celestial_point_c<InputT>)
// {
// return std::forward<SelfT>(self).intersectPZone(std::move(coords), result);
// }
template <std::derived_from<mcc_pzone_container_interface_t> SelfT, typename InputT, typename ResultT>
RetT intersectPZone(this SelfT&& self, InputT coords, std::ranges::output_range<ResultT> auto* result)
requires((mcc_eqt_hrz_coord_c<InputT> || mcc_celestial_point_c<InputT>) &&
(mcc_eqt_hrz_coord_c<ResultT> || mcc_celestial_point_c<ResultT>))
{
return std::forward<SelfT>(self).intersectPZone(std::move(coords), result);
}
protected:
mcc_pzone_container_interface_t() = default;
};
template <typename T>
concept mcc_pzone_container_c = std::derived_from<T, mcc_pzone_container_interface_t<typename T::error_t>>;
/* MOUNT MOVING MODEL CONCEPT */
template <typename T>
concept mcc_slewing_model_c = requires(T t) {
requires mcc_error_c<typename T::error_t>;
// a class of slewing process parameters
requires requires(typename T::slewing_params_t pars) {
// slew mount to target and stop
requires std::convertible_to<decltype(pars.slewAndStop), bool>;
};
{ t.slewToTarget() } -> std::same_as<typename T::error_t>;
{ t.stopSlewing() } -> std::same_as<typename T::error_t>;
{ t.setSlewingParams(std::declval<typename T::slewing_params_t>()) } -> std::same_as<typename T::error_t>;
{ t.getSlewingParams() } -> std::same_as<typename T::slewing_params_t>;
};
template <typename T>
concept mcc_tracking_model_c = requires(T t) {
requires mcc_error_c<typename T::error_t>;
// a class of tracking process parameters
requires requires(typename T::tracking_params_t pars) {
requires mcc_angle_c<decltype(pars.trackSpeedX)>;
requires mcc_angle_c<decltype(pars.trackSpeedY)>;
};
{ t.trackTarget() } -> std::same_as<typename T::error_t>;
{ t.stopTracking() } -> std::same_as<typename T::error_t>;
{ t.setTrackingParams(std::declval<typename T::tracking_params_t>()) } -> std::same_as<typename T::error_t>;
{ t.getTrackingParams() } -> std::same_as<typename T::tracking_params_t>;
};
// template <typename T>
// concept mcc_guiding_model_c = requires(T t) {
// requires mcc_error_c<typename T::error_t>;
// // a class of guiding process parameters
// requires requires(typename T::guiding_params_t pars) {
// // guide along both mount axis
// requires std::convertible_to<decltype(pars.dualAxisGuiding), bool>;
// };
// { t.startGuidingTarget() } -> std::same_as<typename T::error_t>;
// { t.stopGuidingTarget() } -> std::same_as<typename T::error_t>;
// { t.setGuidingParams(std::declval<typename T::guiding_params_t>()) } -> std::same_as<typename T::error_t>;
// { t.getGuidingParams() } -> std::same_as<typename T::guiding_params_t>;
// };
/* GENERIC MOUNT CLASS CONCEPT */
// a concept of class that consist of the full set of coordinate transformation mount control components
// (celestial coordinate transformation engine, mount hardware encoders readings and pointing correction model)
// the set of methods of this class is enough to transform coordinates from ICRS to hardware and back
template <typename T>
concept mcc_position_controls_c = mcc_ccte_c<T> && mcc_hardware_c<T> && mcc_PCM_c<T>;
// a class containing full set of mount controls
template <typename T>
concept mcc_all_controls_c = mcc_position_controls_c<T> && mcc_telemetry_c<T> && mcc_pzone_container_c<T>;
// generic mount:
// 1) telemetry-related methods
// 2) prohibited zones related methods
// 3) slewing and tracking, stop and init mount methods
template <typename T>
concept mcc_generic_mount_c = mcc_telemetry_c<T> && mcc_pzone_container_c<T> && requires(T t) {
// requires mcc_error_c<typename T::error_t>;
// slew mount to target (target coordinates were defined in telemetry data)
{ t.slewToTarget() };
// { t.slewToTarget() } -> std::same_as<typename T::error_t>;
// track target, i.e., the mount moves with celestial speed
{ t.trackTarget() };
// { t.trackTarget() } -> std::same_as<typename T::error_t>;
// { t.startGuidingTarget() } -> std::same_as<typename T::error_t>;
// { t.stopGuidingTarget() } -> std::same_as<typename T::error_t>;
// stop any movement
{ t.stopMount() };
// { t.stopMount() } -> std::same_as<typename T::error_t>;
// init mount
{ t.initMount() };
};
// with logging methods
template <typename T>
concept mcc_generic_log_mount_c = mcc_generic_mount_c<T> && mcc_logger_c<T>;
// Finite-state-machine
template <typename T>
concept mcc_generic_fsm_mount_c = mcc_generic_mount_c<T> && std::derived_from<T, fsm::MccFiniteStateMachine>;
template <typename T>
concept mcc_generic_fsm_log_mount_c =
mcc_generic_mount_c<T> && mcc_logger_c<T> && std::derived_from<T, fsm::MccFiniteStateMachine>;
} // namespace mcc