start developing of FITPACK C++ bindings mount_server.cpp: fix compilation error with GCC15
98 lines
3.2 KiB
Fortran
98 lines
3.2 KiB
Fortran
recursive subroutine fourco(t,n,c,alfa,m,ress,resc,wrk1,wrk2,ier)
|
|
implicit none
|
|
c subroutine fourco calculates the integrals
|
|
c /t(n-3)
|
|
c ress(i) = ! s(x)*sin(alfa(i)*x) dx and
|
|
c t(4)/
|
|
c /t(n-3)
|
|
c resc(i) = ! s(x)*cos(alfa(i)*x) dx, i=1,...,m,
|
|
c t(4)/
|
|
c where s(x) denotes a cubic spline which is given in its
|
|
c b-spline representation.
|
|
c
|
|
c calling sequence:
|
|
c call fourco(t,n,c,alfa,m,ress,resc,wrk1,wrk2,ier)
|
|
c
|
|
c input parameters:
|
|
c t : real array,length n, containing the knots of s(x).
|
|
c n : integer, containing the total number of knots. n>=10.
|
|
c c : real array,length n, containing the b-spline coefficients.
|
|
c alfa : real array,length m, containing the parameters alfa(i).
|
|
c m : integer, specifying the number of integrals to be computed.
|
|
c wrk1 : real array,length n. used as working space
|
|
c wrk2 : real array,length n. used as working space
|
|
c
|
|
c output parameters:
|
|
c ress : real array,length m, containing the integrals ress(i).
|
|
c resc : real array,length m, containing the integrals resc(i).
|
|
c ier : error flag:
|
|
c ier=0 : normal return.
|
|
c ier=10: invalid input data (see restrictions).
|
|
c
|
|
c restrictions:
|
|
c n >= 10
|
|
c t(4) < t(5) < ... < t(n-4) < t(n-3).
|
|
c t(1) <= t(2) <= t(3) <= t(4).
|
|
c t(n-3) <= t(n-2) <= t(n-1) <= t(n).
|
|
c
|
|
c other subroutines required: fpbfou,fpcsin
|
|
c
|
|
c references :
|
|
c dierckx p. : calculation of fouriercoefficients of discrete
|
|
c functions using cubic splines. j. computational
|
|
c and applied mathematics 3 (1977) 207-209.
|
|
c dierckx p. : curve and surface fitting with splines, monographs on
|
|
c numerical analysis, oxford university press, 1993.
|
|
c
|
|
c author :
|
|
c p.dierckx
|
|
c dept. computer science, k.u.leuven
|
|
c celestijnenlaan 200a, b-3001 heverlee, belgium.
|
|
c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
|
|
c
|
|
c latest update : march 1987
|
|
c
|
|
c ..scalar arguments..
|
|
integer n,m,ier
|
|
c ..array arguments..
|
|
real*8 t(n),c(n),wrk1(n),wrk2(n),alfa(m),ress(m),resc(m)
|
|
c ..local scalars..
|
|
integer i,j,n4
|
|
real*8 rs,rc
|
|
c ..
|
|
n4 = n-4
|
|
c before starting computations a data check is made. in the input data
|
|
c are invalid, control is immediately repassed to the calling program.
|
|
ier = 10
|
|
if(n.lt.10) go to 50
|
|
j = n
|
|
do 10 i=1,3
|
|
if(t(i).gt.t(i+1)) go to 50
|
|
if(t(j).lt.t(j-1)) go to 50
|
|
j = j-1
|
|
10 continue
|
|
do 20 i=4,n4
|
|
if(t(i).ge.t(i+1)) go to 50
|
|
20 continue
|
|
ier = 0
|
|
c main loop for the different alfa(i).
|
|
do 40 i=1,m
|
|
c calculate the integrals
|
|
c wrk1(j) = integral(nj,4(x)*sin(alfa*x)) and
|
|
c wrk2(j) = integral(nj,4(x)*cos(alfa*x)), j=1,2,...,n-4,
|
|
c where nj,4(x) denotes the normalised cubic b-spline defined on the
|
|
c knots t(j),t(j+1),...,t(j+4).
|
|
call fpbfou(t,n,alfa(i),wrk1,wrk2)
|
|
c calculate the integrals ress(i) and resc(i).
|
|
rs = 0.
|
|
rc = 0.
|
|
do 30 j=1,n4
|
|
rs = rs+c(j)*wrk1(j)
|
|
rc = rc+c(j)*wrk2(j)
|
|
30 continue
|
|
ress(i) = rs
|
|
resc(i) = rc
|
|
40 continue
|
|
50 return
|
|
end
|