Timur A. Fatkhullin 5279d1c41a add FITPACK Fortran library
start developing of FITPACK C++ bindings
mount_server.cpp: fix compilation error with GCC15
2025-05-05 17:24:21 +03:00

158 lines
4.6 KiB
Fortran

recursive subroutine pardtc(tx,nx,ty,ny,c,kx,ky,nux,nuy,
* newc,ier)
implicit none
c subroutine pardtc takes the knots and coefficients of a bivariate
c spline, and returns the coefficients for a new bivariate spline that
c evaluates the partial derivative (order nux, nuy) of the original
c spline.
c
c calling sequence:
c call pardtc(tx,nx,ty,ny,c,kx,ky,nux,nuy,newc,ier)
c
c input parameters:
c tx : real array, length nx, which contains the position of the
c knots in the x-direction.
c nx : integer, giving the total number of knots in the x-direction
c (hidden)
c ty : real array, length ny, which contains the position of the
c knots in the y-direction.
c ny : integer, giving the total number of knots in the y-direction
c (hidden)
c c : real array, length (nx-kx-1)*(ny-ky-1), which contains the
c b-spline coefficients.
c kx,ky : integer values, giving the degrees of the spline.
c nux : integer values, specifying the order of the partial
c nuy derivative. 0<=nux<kx, 0<=nuy<ky.
c
c output parameters:
c newc : real array containing the coefficients of the derivative.
c the dimension is (nx-nux-kx-1)*(ny-nuy-ky-1).
c ier : integer error flag
c ier=0 : normal return
c ier=10: invalid input data (see restrictions)
c
c restrictions:
c 0 <= nux < kx, 0 <= nuy < kyc
c
c other subroutines required:
c none
c
c references :
c de boor c : on calculating with b-splines, j. approximation theory
c 6 (1972) 50-62.
c dierckx p. : curve and surface fitting with splines, monographs on
c numerical analysis, oxford university press, 1993.
c
c based on the subroutine "parder" by Paul Dierckx.
c
c author :
c Cong Ma
c Department of Mathematics and Applied Mathematics, U. of Cape Town
c Cross Campus Road, Rondebosch 7700, Cape Town, South Africa.
c e-mail : cong.ma@uct.ac.za
c
c latest update : may 2019
c
c ..scalar arguments..
integer nx,ny,kx,ky,nux,nuy,ier, nc
c ..array arguments..
real*8 tx(nx),ty(ny),c((nx-kx-1)*(ny-ky-1)),
* newc((nx-kx-1)*(ny-ky-1))
c ..local scalars..
integer i,j,kx1,ky1,lx,ly,l1,l2,m,m0,m1,
* nkx1,nky1,nxx,nyy,newkx,newky
real*8 ak,fac
c ..
c before starting computations a data check is made. if the input data
c are invalid control is immediately repassed to the calling program.
ier = 10
if(nux.lt.0 .or. nux.ge.kx) go to 400
if(nuy.lt.0 .or. nuy.ge.ky) go to 400
kx1 = kx+1
ky1 = ky+1
nkx1 = nx-kx1
nky1 = ny-ky1
nc = nkx1*nky1
ier = 0
nxx = nkx1
nyy = nky1
newkx = kx
newky = ky
c the partial derivative of order (nux,nuy) of a bivariate spline of
c degrees kx,ky is a bivariate spline of degrees kx-nux,ky-nuy.
c we calculate the b-spline coefficients of this spline
c that is to say newkx = kx - nux, newky = ky - nuy
do 70 i=1,nc
newc(i) = c(i)
70 continue
if(nux.eq.0) go to 200
lx = 1
do 100 j=1,nux
ak = newkx
nxx = nxx-1
l1 = lx
m0 = 1
do 90 i=1,nxx
l1 = l1+1
l2 = l1+newkx
fac = tx(l2)-tx(l1)
if(fac.le.0.) go to 90
do 80 m=1,nyy
m1 = m0+nyy
newc(m0) = (newc(m1)-newc(m0))*ak/fac
m0 = m0+1
80 continue
90 continue
lx = lx+1
newkx = newkx-1
100 continue
200 if(nuy.eq.0) go to 400
c orig: if(nuy.eq.0) go to 300
ly = 1
do 230 j=1,nuy
ak = newky
nyy = nyy-1
l1 = ly
do 220 i=1,nyy
l1 = l1+1
l2 = l1+newky
fac = ty(l2)-ty(l1)
if(fac.le.0.) go to 220
m0 = i
do 210 m=1,nxx
m1 = m0+1
newc(m0) = (newc(m1)-newc(m0))*ak/fac
m0 = m0+nky1
210 continue
220 continue
ly = ly+1
newky = newky-1
230 continue
m0 = nyy
m1 = nky1
do 250 m=2,nxx
do 240 i=1,nyy
m0 = m0+1
m1 = m1+1
newc(m0) = newc(m1)
240 continue
m1 = m1+nuy
250 continue
c300 iwx = 1+nxx*nyy
c iwy = iwx+mx*(kx1-nux)
c
c from parder.f:
c call fpbisp(tx(nux+1),nx-2*nux,ty(nuy+1),ny-2*nuy,newc,newkx,newky,
c * x,mx,y,my,z,newc(iwx),newc(iwy),iwrk(1),iwrk(mx+1))
c
c from bispev.f:
c call fpbisp(tx, nx, ty, ny, c, kx, ky,
c * x,mx,y,my,z,wrk(1), wrk(iw), iwrk(1),iwrk(mx+1))
c
c from fpbisp.f:
c fpbisp(tx, nx, ty, ny, c, kx, ky,
c * x,mx,y,my,z,wx, wy, lx, ly)
400 return
end