mountcontrol/cxx/mount_astrom.h
2025-07-18 19:05:41 +03:00

891 lines
25 KiB
C++

#pragma once
/*********************************
* MOUNT CONTROL COMPONENTS *
* *
* astrometry functions *
*********************************/
#include <chrono>
#include <fstream>
// #include "mcc_coord.h"
#include "mcc_mount_coord.h"
#ifdef VEC_XSIMD
#include <xsimd/xsimd.hpp>
#endif
#include "mcc_traits.h"
#include "mcc_utils.h"
#include "mount_astrom_default.h"
namespace erfa
{
#include <erfa.h>
#include <erfam.h>
} // namespace erfa
namespace mcc::traits
{
#ifdef VEC_XSIMD
template <typename T>
concept mcc_scalar_or_simd_c = xsimd::is_batch<T>::value || std::is_arithmetic_v<T>;
#endif
template <typename T>
concept mcc_real_scalar_or_real_range_c =
std::floating_point<T> || std::ranges::output_range<T, float> || std::ranges::output_range<T, double>;
template <typename T>
concept mcc_real_or_char_range =
std::floating_point<T> ||
(std::ranges::contiguous_range<T> && std::same_as<char, std::remove_cvref_t<std::ranges::range_value_t<T>>>);
} // namespace mcc::traits
namespace mcc::astrom
{
// a time duration represented in radians (the precision is about 100 nanosecond for 10E8 secs (~1157 days))
typedef std::chrono::duration<double, std::ratio<314159265358979, 4320000000000000000>> mcc_chrono_radians;
// https://gssc.esa.int/navipedia/index.php?title=CEP_to_ITRF
static constexpr double mcc_UT1_to_sideral_ratio = 1.002737909350795; // UT1/sideral
// modified Julian date (based on ERFA eraCal2jd)
template <traits::mcc_real_scalar_or_real_range_c ResT, traits::mcc_time_duration_c DT = std::chrono::milliseconds>
static int mcc_julday(traits::mcc_systime_c auto const& start_time,
ResT& mjd,
const DT& step = std::chrono::milliseconds(100))
requires(!std::is_pointer_v<std::decay_t<ResT>>)
{
size_t mjd_size = 0;
if constexpr (std::ranges::range<ResT>) {
mjd_size = std::ranges::distance(mjd.begin(), mjd.end());
if (!mjd_size) {
return -100;
}
}
using namespace std::literals::chrono_literals;
auto dd = std::chrono::floor<std::chrono::days>(start_time);
std::chrono::year_month_day ymd{dd};
static constexpr std::chrono::year MIN_YEAR = -4799y;
if (ymd.year() < MIN_YEAR) {
return -1;
}
if (!ymd.month().ok()) {
return -2;
}
int64_t im = (unsigned)ymd.month();
int64_t id = (unsigned)ymd.day();
int64_t iy = (int)ymd.year();
int64_t my = (im - 14LL) / 12LL;
int64_t iypmy = iy + my;
// integer part of result MJD
int64_t mjd_int = (1461LL * (iypmy + 4800LL)) / 4LL + (367LL * (im - 2LL - 12LL * my)) / 12LL -
(3LL * ((iypmy + 4900LL) / 100LL)) / 4LL + id - 2432076LL;
using fd_t = std::chrono::duration<double, std::ratio<86400>>; // fraction of day
double mjd_float = static_cast<double>(mjd_int) + std::chrono::duration_cast<fd_t>(start_time - dd).count();
if constexpr (std::ranges::range<ResT>) {
double d_step = std::chrono::duration_cast<fd_t>(step).count();
size_t i = 0;
#ifdef VEC_XSIMD
constexpr size_t reg_size = xsimd::batch<double>::size;
size_t vec_size = mjd_size - mjd_size % reg_size;
xsimd::batch<double> res_reg(mjd_float);
xsimd::batch<double> step_reg = [d_step]<size_t... Is>(std::index_sequence<Is...>) {
return xsimd::batch<double>{(Is * d_step)...};
}(std::make_index_sequence<reg_size>{});
alignas(xsimd::batch<double>::arch_type::alignment()) double arr[reg_size];
auto ptr = mjd.begin();
// vectorized part
for (; i < vec_size; i += reg_size) {
res_reg += step_reg;
if constexpr (std::ranges::contiguous_range<ResT>) {
res_reg.store_unaligned(mjd.data() + i);
// res_reg.store_aligned(mjd.data() + i);
} else {
res_reg.store_aligned(arr);
std::ranges::copy(arr, ptr);
if constexpr (std::ranges::random_access_range<ResT>) {
ptr += reg_size;
} else {
for (size_t k = 0; k < reg_size; ++k) {
++ptr;
}
}
}
}
#endif
// scalar part
for (size_t j = i; j < mjd_size; ++j, ++ptr) {
*ptr = mjd_float + j * d_step;
}
} else { // result is scalar
mjd = mjd_float;
}
return 0;
}
template <typename ResT, traits::mcc_time_duration_c DT = std::chrono::milliseconds>
static int mcc_julday(traits::mcc_systime_c auto const& start_time,
ResT& mjd,
const DT& step = std::chrono::milliseconds(100))
requires std::is_pointer_v<std::decay_t<ResT>>
{
auto sp = std::span(mjd);
int ret = mcc_julday(start_time, sp, step);
return ret;
}
/*
* Computes a time duration to reach given altitude
*
* the function returns a std::pair:
* .first = time duration to reach given altitude BEFORE object upper culmination
* .second = time duration to reach given altitude AFTER object upper culmination
*
*
* input RA and DEC are apparent!
*/
std::pair<std::chrono::duration<double>, std::chrono::duration<double>> mcc_time_to_alt(
const MccAngle& alt,
const MccAngle& ra,
const MccAngle& dec,
const MccAngle& lat,
const MccAngle& lon,
traits::mcc_systime_c auto const& now,
traits::mcc_time_duration_c auto const& dut1, // UT1-UTC
traits::mcc_time_duration_c auto const& tt_tai, // TT-TAI
// TAI-UTC (leap seconds)
traits::mcc_time_duration_c auto const& tai_utc)
{
auto nan_dur = std::chrono::duration<double>(std::numeric_limits<double>::quiet_NaN());
auto inf_dur = std::chrono::duration<double>(std::numeric_limits<double>::infinity());
if (alt < 0.0) {
return {nan_dur, nan_dur};
}
if (lat >= 0.0) { // north hemisphere
if (dec < (lat - std::numbers::pi / 2.0)) { // never rises above horizon
return {nan_dur, nan_dur};
}
} else { // south hemisphere
if (dec > (lat + std::numbers::pi / 2.0)) { // never rises above horizon
return {nan_dur, nan_dur};
}
}
double cos_ha = (std::sin(alt) - std::sin(dec) * std::sin(lat)) / std::cos(dec) / std::cos(lat);
if (std::abs(cos_ha) > 1.0) { // it never reach given altitude
return {inf_dur, inf_dur};
}
auto ut1 = now + dut1;
auto tt = now + tai_utc + tt_tai;
double ut1_mjd, tt_mjd;
int ret = mcc_julday(ut1, ut1_mjd);
if (ret) {
return {nan_dur, nan_dur};
}
ret = mcc_julday(tt, tt_mjd);
if (ret) {
return {nan_dur, nan_dur};
}
double lst_now = erfa::eraGst06a(ERFA_DJM0, ut1_mjd, ERFA_DJM0, tt_mjd);
lst_now += lon;
auto acos_ha = std::acos(cos_ha);
// before upper culmination
double lst_before = -acos_ha + ra;
// after upper culmination
double lst_after = acos_ha + ra;
double d1 = (lst_before - lst_now) * mcc_UT1_to_sideral_ratio,
d2 = (lst_after - lst_now) * mcc_UT1_to_sideral_ratio;
if (d1 < 0.0) { // the next day
d1 += 2.0 * std::numbers::pi;
}
if (d2 < 0.0) { // the next day
d2 += 2.0 * std::numbers::pi;
}
static constexpr double rad2secs = 12.0 / std::numbers::pi * 3600.0; // radians to time seconds
return {std::chrono::duration<double>(d1 * rad2secs), std::chrono::duration<double>(d2 * rad2secs)};
// return std::chrono::duration<double>(result * 12.0 / std::numbers::pi * 3600.0); // in seconds
}
/*
* angles are in degrees or sexagimal string form
* RA and DEC are apparent!
*
* returns
* NaN if object is non-rising or "alt_limit" < 0, Inf is circumpolar
*/
/*
double mcc_time_to_alt_limit(traits::mcc_real_or_char_range auto const& alt_limit,
traits::mcc_real_or_char_range auto const& RA,
traits::mcc_real_or_char_range auto const& DEC,
traits::mcc_real_or_char_range auto const& LAT,
traits::mcc_real_or_char_range auto const& LON,
traits::mcc_systime_c auto const& now,
traits::mcc_time_duration_c auto const& dut1, // UT1-UTC
traits::mcc_time_duration_c auto const& tt_tai, // TT-TAI
// TAI-UTC (leap seconds)
traits::mcc_time_duration_c auto const& tai_utc)
{
// sin(alt) = sin(DEC)*sin(phi) + cos(DEC)*cos(phi)*cos(HA)
// HA = LST - RA
// cos(HA) = cos(LST)*cos(RA) + sin(LST)*sin(RA)
// using AT = std::decay_t<decltype(alt_limit)>;
// using RT = std::decay_t<decltype(RA)>;
// using DT = std::decay_t<decltype(DEC)>;
// using LT = std::decay_t<decltype(LAT)>;
// using LGT = std::decay_t<decltype(LON)>;
double ra, dec, lat, lon, alt;
auto to_rads = [](const auto& v, bool hms = false) {
// using v_t = std::remove_cvref<decltype(v)>;
using v_t = std::remove_cvref_t<decltype(v)>;
double res;
if constexpr (!std::floating_point<v_t>) {
res = utils::parsAngleString(v, hms).value_or(std::numeric_limits<double>::quiet_NaN());
} else {
res = v;
}
if (!std::isfinite(res)) {
return res;
}
return res * utils::deg2radCoeff;
};
alt = to_rads(alt_limit);
if (!std::isfinite(alt)) {
return alt;
}
if (alt < 0.0) {
return std::numeric_limits<double>::quiet_NaN();
}
ra = to_rads(RA, true);
if (!std::isfinite(ra)) {
return ra;
}
dec = to_rads(DEC);
if (!std::isfinite(dec)) {
return dec;
}
lat = to_rads(LAT);
if (!std::isfinite(lat)) {
return lat;
}
lon = to_rads(LON);
if (!std::isfinite(lon)) {
return lon;
}
if (lat >= 0.0) { // north hemisphere
if (dec < (lat - std::numbers::pi / 2.0)) { // never rises above horizon
return std::numeric_limits<double>::quiet_NaN();
}
} else { // south hemisphere
if (dec > (lat + std::numbers::pi / 2.0)) { // never rises above horizon
return std::numeric_limits<double>::quiet_NaN();
}
}
double cos_ha = (std::sin(alt) - std::sin(dec) * std::sin(lat)) / std::cos(dec) / std::cos(lat);
if (std::abs(cos_ha) > 1.0) { // it never sets below given altitude
return std::numeric_limits<double>::infinity();
}
double lst = std::acos(cos_ha) + ra;
auto ut1 = now + dut1;
auto tt = now + tai_utc + tt_tai;
double ut1_mjd, tt_mjd, result;
int ret = mcc_julday(ut1, ut1_mjd);
if (ret) {
return std::numeric_limits<double>::quiet_NaN();
}
ret = mcc_julday(tt, tt_mjd);
if (ret) {
return std::numeric_limits<double>::quiet_NaN();
}
double lst_now = erfa::eraGst06a(ERFA_DJM0, ut1_mjd, ERFA_DJM0, tt_mjd);
lst_now += lon;
result = lst - lst_now;
if (result < 0.0) { // the next sideral day
result += 2.0 * std::numbers::pi;
}
if (result > std::numbers::pi) { // object is already below the limit
return 0.0;
}
result *= mcc_UT1_to_sideral_ratio; // to UT1 scale
return result;
}
*/
/*
* Computes a time duration to reach given azimuth
*
* the function returns a std::pair:
* .first = time duration to reach given altitude BEFORE object upper culmination
* .second = time duration to reach given altitude AFTER object upper culmination
*
*
* input RA and DEC are apparent!
* input azimuth is assumed to be started from the South through the West
* (the South is az = 0, the West is az = pi/2 ...)
*/
std::pair<std::chrono::duration<double>, std::chrono::duration<double>> mcc_time_to_az(
const MccAngle& az,
const MccAngle& ra,
const MccAngle& dec,
const MccAngle& lat,
const MccAngle& lon,
traits::mcc_systime_c auto const& now,
traits::mcc_time_duration_c auto const& dut1, // UT1-UTC
traits::mcc_time_duration_c auto const& tt_tai, // TT-TAI
// TAI-UTC (leap seconds)
traits::mcc_time_duration_c auto const& tai_utc)
{
auto nan_dur = std::chrono::duration<double>(std::numeric_limits<double>::quiet_NaN());
auto inf_dur = std::chrono::duration<double>(std::numeric_limits<double>::infinity());
auto cs_d = cos(dec);
auto cos_az = cos(az);
auto C1 = cs_d / tan(az);
auto C2 = -sin(dec) * cos(lat);
auto C3 = cs_d * sin(lat);
auto C2C3 = C2 * C3;
auto C1_2 = C1 * C1;
auto C2_2 = C2 * C2;
auto C3_2 = C2 * C3;
auto C1C3 = C1_2 + C3_2;
auto D = C2_2 * C3_2 - C1C3 * (C2_2 - C1_2);
if (D < 0.0) { // object never reach given azimuth
return {inf_dur, inf_dur};
}
auto cos_ha1 = -(C2C3 + sqrt(D)) / C1C3;
auto cos_ha2 = -(C2C3 - sqrt(D)) / C1C3;
auto sin_z1 = (C2 + C3 * cos_ha1) / cos_az;
auto sin_z2 = (C2 + C3 * cos_ha2) / cos_az;
auto ut1 = now + dut1;
auto tt = now + tai_utc + tt_tai;
double ut1_mjd, tt_mjd;
int ret = mcc_julday(ut1, ut1_mjd);
if (ret) {
return {nan_dur, nan_dur};
}
ret = mcc_julday(tt, tt_mjd);
if (ret) {
return {nan_dur, nan_dur};
}
double lst_now = erfa::eraGst06a(ERFA_DJM0, ut1_mjd, ERFA_DJM0, tt_mjd);
lst_now += lon;
}
/* Classes to represent IERS bulletins
*
* BULLETIN A: https://datacenter.iers.org/data/latestVersion/bulletinA.txt
* leapseconds: https://hpiers.obspm.fr/iers/bul/bulc/Leap_Second.dat
*
*/
class MccLeapSeconds final
{
public:
typedef std::chrono::system_clock::time_point time_point_t;
typedef std::chrono::duration<double> real_secs_t; // seconds duration in double
MccLeapSeconds()
{
// create default values
std::istringstream ist(defaults::MCC_DEFAULT_LEAP_SECONDS_FILE);
load(ist);
}
~MccLeapSeconds() = default;
time_point_t expireDate() const
{
return _expireDate;
}
// load from stream
bool load(std::derived_from<std::basic_istream<char>> auto& stream, char comment_sym = '#')
{
std::istringstream is;
double mjd;
unsigned day, month;
int year;
double tai_utc;
decltype(_expireDate) edate;
std::vector<leapsecond_db_elem_t> db;
for (std::string line; std::getline(stream, line);) {
auto sv = utils::trimSpaces(line, utils::TrimType::TRIM_LEFT);
if (sv.size()) {
if (sv[0] == comment_sym) { // comment string
if (std::regex_match(line, expr_date_rx)) {
auto pos = line.find("on");
sv = utils::trimSpaces(std::string_view{line.begin() + pos + 2, line.end()},
utils::TrimType::TRIM_LEFT);
is.str({sv.begin(), sv.end()});
is >> std::chrono::parse("%d %B %Y", edate);
is.clear();
}
continue;
}
} else {
continue;
}
if (std::regex_match(line, data_rx)) {
is.str(line);
is >> mjd >> day >> month >> year >> tai_utc;
db.emplace_back(mjd, std::chrono::year_month_day{std::chrono::year{year} / month / day}, tai_utc);
// db.emplace_back(mjd,
// std::chrono::year_month_day{std::chrono::year{year}, std::chrono::month{month},
// std::chrono::day{day}},
// tai_utc);
is.clear();
continue;
}
}
if (db.empty()) { // keep previous data
return false;
}
_expireDate = std::move(edate);
_db = std::move(db);
return true;
}
bool load(traits::mcc_input_char_range auto const& filename, char comment_sym = '#')
{
std::ifstream fst(filename);
bool ok = fst.is_open();
if (!ok) {
return false;
}
ok = load(fst, comment_sym);
fst.close();
return ok;
}
// std::optional<double> operator[](const time_point_t& tp) const
std::optional<real_secs_t> operator[](const time_point_t& tp) const
{
if (tp > _expireDate) { // ???????!!!!!!!!!!!
return std::nullopt;
// return _db.back().tai_utc;
}
std::chrono::year_month_day ymd{std::chrono::floor<std::chrono::days>(tp)};
for (auto const& el : _db | std::views::reverse) {
if (ymd >= el.ymd) {
// return el.tai_utc;
return real_secs_t{el.tai_utc};
}
}
return std::nullopt;
}
// std::optional<double> operator[](const double& mjd) const
std::optional<real_secs_t> operator[](const double& mjd) const
{
double e_mjd;
astrom::mcc_julday(_expireDate, e_mjd);
if (mjd > e_mjd) { // ???????!!!!!!!!!!!
return std::nullopt;
// return _db.back().tai_utc;
}
for (auto const& el : _db | std::views::reverse) {
if (mjd >= el.mjd) {
return real_secs_t{el.tai_utc};
}
}
return std::nullopt;
}
void dump(std::derived_from<std::basic_ostream<char>> auto& stream) const
{
stream << std::format("Leap seconds database expire date: {}", _expireDate) << '\n';
for (auto const& el : _db) {
stream << std::format("{} {} {}", el.mjd, el.ymd, el.tai_utc) << '\n';
}
}
private:
inline static const std::regex expr_date_rx{
"^ *# *File +expires +on +[0-8]{1,2} "
"+(January|February|March|April|May|June|July|August|September|October|November|December) +[0-9]{4} *$"};
inline static const std::regex data_rx{"^ *[0-9]{5,}(\\.?[0-9]+) +[0-9]{1,2} +[0-9]{1,2} +[0-9]{4} +[0-9]{1,} *$"};
time_point_t _expireDate{};
struct leapsecond_db_elem_t {
double mjd;
std::chrono::year_month_day ymd;
double tai_utc; // TAI-UTC in seconds
};
std::vector<leapsecond_db_elem_t> _db{};
};
class MccIersBulletinA final
{
public:
typedef std::chrono::system_clock::time_point time_point_t;
typedef std::chrono::duration<double> real_secs_t; // seconds duration in double
struct pole_pos_t {
double x, y;
};
struct date_range_t {
std::chrono::year_month_day begin;
std::chrono::year_month_day end;
};
struct date_range_mjd_t {
double begin;
double end;
};
MccIersBulletinA()
{
// create pre-defined (default-state) database
std::istringstream ist(defaults::MCC_DEFAULT_IERS_BULLETIN_A_FILE);
load(ist);
}
~MccIersBulletinA() = default;
std::chrono::system_clock::time_point bulletinDate() const
{
return _date;
}
date_range_t dateRange() const
{
return {_db.front().ymd, _db.back().ymd};
}
date_range_mjd_t dateRangeMJD() const
{
return {_db.front().mjd, _db.back().mjd};
}
// double TT_TAI() const
real_secs_t TT_TAI() const
{
return real_secs_t{_tt_tai};
}
// DUT1 = UT1 - UTC
// std::optional<double> DUT1(const time_point_t& tp) const
std::optional<real_secs_t> DUT1(const time_point_t& tp) const
{
// use of the closest date
std::chrono::year_month_day ymd{std::chrono::round<std::chrono::days>(tp)};
if (ymd < _db.front().ymd) {
return std::nullopt;
}
if (ymd > _db.back().ymd) {
return std::nullopt;
}
for (auto const& el : _db) {
if (ymd <= el.ymd) {
return real_secs_t{el.dut1};
}
}
return std::nullopt;
}
// std::optional<double> DUT1(double mjd) const
std::optional<real_secs_t> DUT1(double mjd) const
{
mjd = std::round(mjd); // round to closest integer MJD
if (mjd < _db.front().mjd) {
return std::nullopt;
}
if (mjd > _db.back().mjd) {
return std::nullopt;
}
for (auto const& el : _db) {
if (mjd <= el.mjd) {
return real_secs_t{el.dut1};
}
}
return std::nullopt;
}
std::optional<pole_pos_t> polarCoords(const time_point_t& tp) const
{
std::chrono::year_month_day ymd{std::chrono::round<std::chrono::days>(tp)};
if (ymd < _db.front().ymd) {
return std::nullopt;
}
if (ymd > _db.back().ymd) {
return std::nullopt;
}
for (auto const& el : _db) {
if (ymd <= el.ymd) {
return pole_pos_t{el.x, el.y};
}
}
return std::nullopt;
}
std::optional<pole_pos_t> polarCoords(double mjd) const
{
mjd = std::round(mjd); // round to closest integer MJD
if (mjd < _db.front().mjd) {
return std::nullopt;
}
if (mjd > _db.back().mjd) {
return std::nullopt;
}
for (auto const& el : _db) {
if (mjd <= el.mjd) {
return pole_pos_t{el.x, el.y};
}
}
return std::nullopt;
}
bool load(std::derived_from<std::basic_istream<char>> auto& stream, char comment_sym = '*')
{
std::vector<earth_orient_db_elem_t> db;
enum { TAB_STATE_SEEK, TAB_STATE_START };
int tab_state = TAB_STATE_SEEK;
int year;
unsigned month, day;
double mjd, x, y, dut1;
std::istringstream is;
decltype(_date) bdate;
double tt_tai;
for (std::string line; std::getline(stream, line);) {
if (line.empty()) {
continue;
}
auto sv = utils::trimSpaces(line, utils::TrimType::TRIM_LEFT);
if (sv.size()) {
if (sv[0] == comment_sym) { // comment string
continue;
}
if (tab_state == TAB_STATE_START) {
if (std::regex_match(sv.begin(), sv.end(), bull_tab_vals_rx)) {
// is.str({sv.begin(), sv.end()});
is.str(line);
is >> year >> month >> day >> mjd >> x >> y >> dut1;
db.emplace_back(mjd, std::chrono::year_month_day{std::chrono::year{year} / month / day}, x, y,
dut1);
is.clear();
} else { // end of the table - just stop parsing
break;
}
continue;
}
if (std::regex_match(sv.begin(), sv.end(), bull_date_rx)) {
is.str({sv.begin(), sv.end()});
is >> std::chrono::parse("%d %B %Y", bdate);
continue;
}
if (std::regex_match(sv.begin(), sv.end(), bull_tt_tai_rx)) {
is.str({sv.begin(), sv.end()});
std::string dummy;
is >> dummy >> dummy >> dummy >> dummy >> tt_tai;
continue;
}
if (std::regex_match(sv.begin(), sv.end(), bull_tab_title_rx)) {
tab_state = TAB_STATE_START;
continue;
}
} else { // empty string (only spaces)
continue;
}
}
if (db.empty()) {
return false;
}
_date = std::move(bdate);
_tt_tai = tt_tai;
_db = std::move(db);
return true;
}
bool load(traits::mcc_input_char_range auto const& filename, char comment_sym = '*')
{
std::ifstream fst(filename);
bool ok = fst.is_open();
if (!ok) {
return false;
}
ok = load(fst, comment_sym);
fst.close();
return ok;
}
void dump(std::derived_from<std::basic_ostream<char>> auto& stream) const
{
stream << std::format("Bulletin A issue date: {}", _date) << '\n';
stream << std::format("TT-TAI: {}", _tt_tai) << '\n';
for (auto const& el : _db) {
stream << std::format("{} {} {:6.4f} {:6.4f} {:7.5f}", el.mjd, el.ymd, el.x, el.y, el.dut1) << '\n';
}
}
private:
inline static const std::regex bull_date_rx{
"^ *[0-9]{1,2} +(January|February|March|April|May|June|July|August|September|October|November|December) "
"+[0-9]{4,} +Vol\\. +[XMLCDVI]+ +No\\. +[0-9]+ *$"};
inline static const std::regex bull_tt_tai_rx{"^ *TT += +TAI +\\+ +[0-9]+\\.[0-9]+ +seconds *$"};
inline static const std::regex bull_tab_title_rx{"^ *MJD +x\\(arcsec\\) +y\\(arcsec\\) +UT1-UTC\\(sec\\) *$"};
inline static const std::regex bull_tab_vals_rx{
"^ *[0-9]{4,} +[0-9]{1,2} +[0-9]{1,2} +[0-9]{5,} +[0-9]+\\.[0-9]+ +[0-9]+\\.[0-9]+ +[0-9]+\\.[0-9]+ *$"};
time_point_t _date;
double _tt_tai;
struct earth_orient_db_elem_t {
double mjd;
std::chrono::year_month_day ymd;
double x, y; // Polar coordinates in arcsecs
double dut1; // UT1-UTC in seconds
};
std::vector<earth_orient_db_elem_t> _db;
};
} // namespace mcc::astrom