mountcontrol/asibfm700/asibfm700_configfile.h
2025-09-30 18:55:14 +03:00

458 lines
16 KiB
C++

#pragma once
/**/
#include <expected>
#include <filesystem>
#include <fstream>
#include <unordered_map>
#include <mcc_angle.h>
#include <mcc_pcm.h>
#include <mcc_utils.h>
namespace asibfm700
{
/* A SIMPLE "KEYWORD - VALUE" HOLDER CLASS SUITABLE TO STORE SOME APPLICATION CONFIGURATION */
// to follow std::variant requirements (not references, not array, not void)
template <typename T>
concept variant_valid_type_c = requires { !std::is_array_v<T> && !std::is_void_v<T> && !std::is_reference_v<T>; };
// configuration record
template <typename T>
concept config_record_c = requires(T t) {
requires std::same_as<decltype(t.key), std::string_view>; // keyword
requires variant_valid_type_c<decltype(t.value)>; // value
};
// simple minimal-requirement configuration record class
template <variant_valid_type_c T>
struct simple_config_record_t {
std::string_view key;
T value;
};
// description of config (a std::tuple of "config_record_c"s)
template <typename T>
concept config_desc_c = requires(T t) { []<config_record_c... Ts>(std::tuple<Ts...>) {}(t); };
template <config_desc_c DESCR_T>
class ConfigHolder
{
protected:
/* helper definitions */
// deduce unique value types of the given config records
template <config_desc_c TplT>
struct deduce_val_types;
template <config_record_c RT>
struct deduce_val_types<std::tuple<RT>> {
using value_type_t = std::tuple<decltype(RT::value)>;
};
template <config_record_c RT, config_record_c... RTs>
struct deduce_val_types<std::tuple<RT, RTs...>> {
using value_type_t =
std::conditional_t<(std::same_as<RT, RTs> || ...),
typename deduce_val_types<std::tuple<RTs...>>::value_type_t,
decltype(std::tuple_cat(
std::declval<std::tuple<decltype(RT::value)>>(),
std::declval<typename deduce_val_types<std::tuple<RTs...>>::value_type_t>()))>;
};
template <config_desc_c TplT>
using deduce_val_types_t = typename deduce_val_types<TplT>::value_type_t;
// deduce std::variant type from std::tuple element types
template <mcc::traits::mcc_tuple_c TplT>
struct variant_from_tuple;
template <typename T, typename... Ts>
struct variant_from_tuple<std::tuple<T, Ts...>> {
using variant_t = std::variant<T, Ts...>;
};
template <mcc::traits::mcc_tuple_c TplT>
using variant_from_tuple_t = typename variant_from_tuple<TplT>::variant_t;
public:
static constexpr char COMMENT_SYMBOL = '#';
static constexpr char KEY_VALUE_DELIM = '=';
static constexpr char VALUE_ARRAY_DELIM = ',';
// very simple de-serializer (only numbers and strings)
inline static auto defaultDeserializeFunc = [](this auto&& self, std::string_view str, auto& value) {
using value_t = std::decay_t<decltype(value)>;
if constexpr (std::is_arithmetic_v<value_t>) {
auto v = mcc::utils::numFromStr<value_t>(str);
if (!v.has_value()) {
return false;
}
value = v.value();
} else if constexpr (mcc::traits::mcc_output_char_range<value_t>) {
value_t r;
std::ranges::copy(str, std::back_inserter(r));
value = r;
} else if constexpr (std::ranges::range<value_t>) {
using el_t = std::ranges::range_value_t<value_t>;
if constexpr (std::is_reference_v<el_t> || std::is_const_v<el_t>) { // no reference or constants allowed
return false;
}
value_t r;
el_t elem;
auto els = std::views::split(str, VALUE_ARRAY_DELIM);
for (auto const& el : els) {
// if (std::forward<decltype(self)>(self)(std::string_view(el), elem)) {
if (std::forward<decltype(self)>(self)(mcc::utils::trimSpaces(el), elem)) {
std::back_inserter(r) = elem;
} else {
return false;
}
}
value = r;
} else {
return false;
}
return true;
};
ConfigHolder(DESCR_T desc)
{
[desc = std::move(desc), this]<size_t... Is>(std::index_sequence<Is...>) {
((_configDB[std::get<Is>(desc).key] = std::get<Is>(desc).value), ...);
}(std::make_index_sequence<std::tuple_size_v<DESCR_T>>());
}
virtual ~ConfigHolder() = default;
// deser_func - de-serialization function, i.e., a conversional function
// from string-representation to some value
//
// DeserFuncT is a type of callable with signature:
// bool deser_func(std::string_view str, value_type& val)
// where
// str - input (serialized) string-representation of configuration
// item value
// 'value_type' - must take into account all possible value types
// in the input configuration description (see constructor)
//
// most suitable implementation is a generic lambda function, i.e.:
// auto deser_func(std::string_view str, auto& cnv_val)->bool {
// ...
// };
template <std::ranges::contiguous_range R, typename DeserFuncT>
std::error_code parse(const R& buffer, DeserFuncT&& deser_func)
requires std::same_as<std::remove_cvref_t<std::ranges::range_value_t<R>>, char>
{
if constexpr (std::is_array_v<std::decay_t<R>>) { // char*, const char*
return parse(std::string_view{std::forward<R>(buffer)}, std::forward<DeserFuncT>(deser_func));
}
auto curr_buffer = std::string_view(buffer.begin(), buffer.end());
std::string_view key, value;
bool buffer_end = false;
do {
auto it = std::ranges::find(curr_buffer, '\n');
if (it == curr_buffer.end()) {
buffer_end = true;
}
auto sv =
mcc::utils::trimSpaces(std::string_view(curr_buffer.begin(), it), mcc::utils::TrimType::TRIM_LEFT);
curr_buffer = {it + 1, curr_buffer.end()};
if (sv.size() && (sv[0] != COMMENT_SYMBOL)) {
it = std::ranges::find(sv, KEY_VALUE_DELIM);
if (it != sv.begin()) { // ignore an empty key
key = mcc::utils::trimSpaces(std::string_view(sv.begin(), it), mcc::utils::TrimType::TRIM_RIGHT);
auto rec_it = _configDB.find(key);
if (rec_it != _configDB.end()) { // ignore key if it is not in description
value =
mcc::utils::trimSpaces(std::string_view(it + 1, sv.end()), mcc::utils::TrimType::TRIM_BOTH);
bool ok = forIndex(rec_it->second, value, std::forward<DeserFuncT>(deser_func),
rec_it->second.index());
if (!ok) {
return std::make_error_code(std::errc::invalid_argument);
}
}
}
}
} while (!buffer_end);
return {};
}
template <std::ranges::contiguous_range R>
std::error_code parse(const R& buffer)
{
return parse(buffer, defaultDeserializeFunc);
}
template <typename T>
std::expected<T, std::error_code> value(std::string_view key)
{
auto it = _configDB.find(key);
if (it == _configDB.end()) {
return std::unexpected(std::make_error_code(std::errc::argument_out_of_domain));
}
std::expected<T, std::error_code> res;
std::visit(
[&res](auto&& val) {
using v_t = std::decay_t<decltype(val)>;
if constexpr (std::convertible_to<v_t, T>) {
res = static_cast<T>(std::forward<decltype(val)>(val));
} else if constexpr (std::constructible_from<T, v_t>) {
res = T{std::forward<decltype(val)>(val)};
} else {
res = std::unexpected(std::make_error_code(std::errc::invalid_argument));
}
},
it->second);
return res;
}
protected:
std::unordered_map<std::string_view, variant_from_tuple_t<deduce_val_types_t<DESCR_T>>> _configDB;
template <size_t I = 0, typename FuncT, typename... Ts>
bool forIndex(std::variant<Ts...>& var, std::string_view s, FuncT&& func, size_t idx)
{
if constexpr (I < sizeof...(Ts)) {
if (I == idx) {
using v_t = std::tuple_element_t<I, std::tuple<Ts...>>;
v_t val;
bool ok = std::forward<FuncT>(func)(s, val);
if (ok) {
var = val;
}
return ok;
} else {
return forIndex<I + 1>(var, s, std::forward<FuncT>(func), idx);
}
}
return false;
}
};
/* ASTOROSIB FM700 MOUNT CONFIGURATION CLASS */
// configuration description and its defaults
static auto Asibfm700MountConfigDefaults = std::make_tuple(
// main cycle period in millisecs
simple_config_record_t{"hardwarePollingPeriod", std::chrono::milliseconds{100}},
/* geographic coordinates of the observation site */
// site latitude in degrees
simple_config_record_t{"siteLatitude", mcc::MccAngle(43.646711_degs)},
// site longitude in degrees
simple_config_record_t{"siteLongitude", mcc::MccAngle(41.440732_degs)},
// site elevation in meters
simple_config_record_t{"siteElevation", 2070.0},
/* celestial coordinate transformation */
// wavelength at which refraction is calculated (in mkm)
simple_config_record_t{"refractWavelength", 0.55},
// an empty filename means default precompiled string
simple_config_record_t{"leapSecondFilename", std::string()},
// an empty filename means default precompiled string
simple_config_record_t{"bulletinAFilename", std::string()},
/* pointing correction model */
// PCM default type
simple_config_record_t{"pcmType", mcc::MccDefaultPCMType::PCM_TYPE_GEOMETRY},
// PCM geometrical coefficients
simple_config_record_t{"pcmGeomCoeffs", std::vector<double>{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}},
// PCM B-spline degrees
simple_config_record_t{"pcmBsplineDegree", std::vector<size_t>{3, 3}},
// PCM B-spline knots along X-axis (HA-angle or azimuth). By default from 0 to 2*PI radians
simple_config_record_t{"pcmBsplineXknots",
std::vector<double>{0.0, 0.6981317, 1.3962634, 2.0943951, 2.7925268, 3.4906585, 4.1887902,
4.88692191, 5.58505361, 6.28318531}},
// PCM B-spline knots along Y-axis (declination or zenithal distance). By default from -PI/6 to PI/2 radians
simple_config_record_t{"pcmBsplineYknots",
std::vector<double>{-0.52359878, -0.29088821, -0.05817764, 0.17453293, 0.40724349,
0.63995406, 0.87266463, 1.10537519, 1.33808576, 1.57079633}},
// PCM B-spline coeffs for along X-axis (HA-angle or azimuth)
simple_config_record_t{"pcmBsplineXcoeffs", std::vector<double>{}},
// PCM B-spline coeffs for along Y-axis (declination or zenithal distance)
simple_config_record_t{"pcmBsplineYcoeffs", std::vector<double>{}},
/* slewing and tracking parameters */
// arcseconds per second
simple_config_record_t{"sideralRate", 15.0410686},
// timeout for telemetry updating in milliseconds
simple_config_record_t{"telemetryTimeout", std::chrono::milliseconds(3000)},
// minimal allowed time in seconds to prohibited zone
simple_config_record_t{"minTimeToPZone", std::chrono::seconds(10)},
// a time interval to update prohibited zones related quantities (millisecs)
simple_config_record_t{"updatingPZoneInterval", std::chrono::milliseconds(5000)},
// coordinates difference in arcsecs to stop slewing
simple_config_record_t{"slewToleranceRadius", 5.0},
// target-mount coordinate difference in arcsecs to start adjusting of slewing
simple_config_record_t{"adjustCoordDiff", 50.0},
// minimum time in millisecs between two successive adjustments
simple_config_record_t{"adjustCycleInterval", std::chrono::milliseconds(300)},
// slew process timeout in seconds
simple_config_record_t{"slewTimeout", std::chrono::seconds(3600)},
// a time shift into future to compute target position in future (UT1-scale time duration, millisecs)
simple_config_record_t{"timeShiftToTargetPoint", std::chrono::milliseconds(10000)},
// minimum time in millisecs between two successive tracking corrections
simple_config_record_t{"trackingCycleInterval", std::chrono::milliseconds(300)},
/* prohibited zones */
// minimal altitude
simple_config_record_t{"pzMinAltitude", mcc::MccAngle(10.0_degs)},
// HA-axis limit switch minimal value
simple_config_record_t{"pzLimitSwitchHAMin", mcc::MccAngle(-170.0_degs)},
// HA-axis limit switch maximal value
simple_config_record_t{"pzLimitSwitchHAMax", mcc::MccAngle(170.0_degs)},
// DEC-axis limit switch minimal value
simple_config_record_t{"pzLimitSwitchDecMin", mcc::MccAngle(-90.0_degs)},
// DEC-axis limit switch maximal value
simple_config_record_t{"pzLimitSwitchDecMax", mcc::MccAngle(90.0_degs)},
/* hardware-related */
// maximal moving rate (degrees per second) along HA-axis (Y-axis of Sidereal servo microcontroller)
simple_config_record_t{"hwMaxRateHA", mcc::MccAngle(5.0_degs)},
// maximal moving rate (degrees per second) along DEC-axis (X-axis of Sidereal servo microcontroller)
simple_config_record_t{"hwMaxRateDEC", mcc::MccAngle(5.0_degs)}
);
class Asibfm700MountConfig : protected ConfigHolder<decltype(Asibfm700MountConfigDefaults)>
{
using base_t = ConfigHolder<decltype(Asibfm700MountConfigDefaults)>;
public:
using base_t::value;
Asibfm700MountConfig() : base_t(Asibfm700MountConfigDefaults) {}
~Asibfm700MountConfig() = default;
std::error_code load(const std::filesystem::path& path)
{
std::string buffer;
std::error_code ec;
auto sz = std::filesystem::file_size(path, ec);
if (!ec && sz) {
std::ifstream fst(path);
try {
buffer.resize(sz);
fst.read(buffer.data(), sz);
} catch (std::ios_base::failure const& ex) {
return ex.code();
} catch (...) {
return std::make_error_code(std::errc::not_enough_memory);
}
fst.close();
} else {
return ec;
}
return base_t::parse(buffer, deserializer);
}
protected:
inline static auto deserializer = [](std::string_view str, auto& value) {
using value_t = std::decay_t<decltype(value)>;
bool ok;
if constexpr (std::is_arithmetic_v<value_t> || std::ranges::output_range<value_t, char> ||
std::ranges::range<value_t>) {
return base_t::defaultDeserializeFunc(str, value);
} else if constexpr (mcc::traits::mcc_time_duration_c<value_t>) {
typename value_t::rep vd;
ok = base_t::defaultDeserializeFunc(str, vd);
if (ok) {
value = value_t{vd};
}
} else if constexpr (std::same_as<value_t, mcc::MccAngle>) { // assume here all angles are in degrees
double vd;
ok = base_t::defaultDeserializeFunc(str, vd);
if (ok) {
value = mcc::MccAngle(vd, mcc::MccDegreeTag{});
}
} else {
return false;
}
return ok;
};
};
} // namespace asibfm700