mountcontrol/cxx/mcc_mount_concepts.h
2025-08-15 12:18:19 +03:00

782 lines
31 KiB
C++

#pragma once
/* MOUNT CONTROL COMPONENTS LIBRARY */
#include <concepts>
#include "mcc_finite_state_machine.h"
#include "mcc_mount_coord.h"
#include "mcc_traits.h"
/* SOME LIBRARY-WIDE DECLARATIONS */
namespace mcc
{
// mount construction type (only the most common ones)
enum class MccMountType : uint8_t { GERMAN_TYPE, FORK_TYPE, CROSSAXIS_TYPE, ALTAZ_TYPE };
template <MccMountType TYPE>
static constexpr std::string_view MccMountTypeStr = TYPE == MccMountType::GERMAN_TYPE ? "GERMAN"
: TYPE == MccMountType::FORK_TYPE ? "FORK"
: TYPE == MccMountType::CROSSAXIS_TYPE ? "CROSSAXIS"
: TYPE == MccMountType::ALTAZ_TYPE ? "ALTAZ"
: "UNKNOWN";
template <MccMountType TYPE>
static constexpr bool mcc_is_equatorial_mount = TYPE == MccMountType::GERMAN_TYPE ? true
: TYPE == MccMountType::FORK_TYPE ? true
: TYPE == MccMountType::CROSSAXIS_TYPE ? true
: TYPE == MccMountType::ALTAZ_TYPE ? false
: false;
template <MccMountType TYPE>
static constexpr bool mcc_is_altaz_mount = TYPE == MccMountType::GERMAN_TYPE ? false
: TYPE == MccMountType::FORK_TYPE ? false
: TYPE == MccMountType::CROSSAXIS_TYPE ? false
: TYPE == MccMountType::ALTAZ_TYPE ? true
: false;
static consteval bool mccIsEquatorialMount(const MccMountType type)
{
return type == MccMountType::GERMAN_TYPE ? true
: type == MccMountType::FORK_TYPE ? true
: type == MccMountType::CROSSAXIS_TYPE ? true
: type == MccMountType::ALTAZ_TYPE ? false
: false;
};
static consteval bool mccIsAltAzMount(const MccMountType type)
{
return type == MccMountType::GERMAN_TYPE ? false
: type == MccMountType::FORK_TYPE ? false
: type == MccMountType::CROSSAXIS_TYPE ? false
: type == MccMountType::ALTAZ_TYPE ? true
: false;
};
/* NULL-LOGGER CLASS */
struct MccNullLogger {
typedef int loglevel_t;
void setLogLevel(loglevel_t){};
loglevel_t getLogLevel() const
{
return 0;
};
void logMessage(loglevel_t, const std::string&) {};
void logError(const std::string&) {};
void logDebug(const std::string&) {};
void logWarn(const std::string&) {};
void logInfo(const std::string&) {};
};
} // namespace mcc
/* MOUNT COMPONENTS CONCEPTS */
namespace mcc::traits
{
/* GENERIC LOGGER */
template <typename T>
concept mcc_logger_c = requires(T t, const T t_const) {
typename T::loglevel_t;
{ t.setLogLevel(std::declval<typename T::loglevel_t>()) };
{ t_const.getLogLevel() } -> std::same_as<typename T::loglevel_t>;
{ t.logMessage(std::declval<typename T::loglevel_t>(), std::declval<const std::string&>()) };
{ t.logError(std::declval<const std::string&>()) };
{ t.logDebug(std::declval<const std::string&>()) };
{ t.logWarn(std::declval<const std::string&>()) };
{ t.logInfo(std::declval<const std::string&>()) };
};
/* A CONCEPT FOR COORDINATE REPRESENTATION */
// it is a fundametal floating-point type or
// a class that can be constructed from or converted to the double fundametal type
template <typename T>
concept mcc_coord_t = std::floating_point<T> || (std::convertible_to<T, double> && std::constructible_from<T, double>);
/* A CONCEPT FOR UTC TIME POINT REPRESENTATION */
// it is a std::chrono::sys_time<Duration> or
// fundamental arithmetic type that represent number of seconds after the 00:00:00 of 1 January 1970 (UNIX time)
template <typename T>
concept mcc_utc_time_point_c = mcc_systime_c<T> || std::is_arithmetic_v<T>;
/* A CONCEPT FOR CLASS TO REPRESENT CELESTIAL POINT */
template <typename T>
concept mcc_celestial_point_c = requires(T t) {
// a type to represent UTC time point of coordinates
// it's clear that this makes sense for apparent coordinates
typename T::time_point_t;
// coordinates pair type (e.g. IRCS RA,DEC, Az,Alt and so on)
requires std::same_as<decltype(t.coordPairKind), MccCoordPairKind>;
typename T::coord_t;
// co-longitude (e.g. RA or Az)
requires std::same_as<decltype(t.x), typename T::coord_t>;
// co-latitude (e.g. DEC or ZD)
requires std::same_as<decltype(t.y), typename T::coord_t>;
};
/* ASTROMETRY-RELATED COMPUTATION ENGINE */
template <typename T>
concept mcc_astrom_engine_c = requires(T t, const T t_const) {
requires mcc_error_c<typename T::error_t>;
// typename T::engine_state_t;
// requires std::movable<typename T::engine_state_t>;
typename T::coord_t; // type for coordinates representation
typename T::time_point_t; // type to represent UTC time point
typename T::juldate_t; // type to represent Julian date
typename T::sideral_time_t; // type to represent sideral time
typename T::eo_t; // equation of origins
typename T::pa_t; // type to represent parallactic angle
typename T::refract_result_t;
/* coordinates conversional methods */
// ICRS RA and DEC to observed place: icrs2obs(ra, dec, jd, ra_app, dec_app, ha, az, alt, eo)
{
t.icrs2obs(std::declval<typename T::coord_t>(), std::declval<typename T::coord_t>(),
std::declval<typename T::juldate_t>(), std::declval<typename T::coord_t&>(),
std::declval<typename T::coord_t&>(), std::declval<typename T::coord_t&>(),
std::declval<typename T::coord_t&>(), std::declval<typename T::coord_t&>(),
std::declval<typename T::eo_t&>())
} -> std::same_as<typename T::error_t>;
// observed place to ICRS RA and DEC: obs2icrs(type, x, y, jd, ra_icrs, dec_icrs)
// (x, y) = (AZ, ZD) if type == MccCoordPairKind::COORDS_KIND_AZZD
// (x, y) = (AZ, ALT) if type == MccCoordPairKind::COORDS_KIND_AZALT
// (x, y) = (HA, DEC) if type == MccCoordPairKind::COORDS_KIND_HADEC_APP
// (x, y) = (RA, DEC) if type == MccCoordPairKind::COORDS_KIND_RADEC_APP
{
t.obs2icrs(std::declval<MccCoordPairKind>(), std::declval<typename T::coord_t>(),
std::declval<typename T::coord_t>(), std::declval<typename T::juldate_t>(),
std::declval<typename T::coord_t&>(), std::declval<typename T::coord_t&>())
} -> std::same_as<typename T::error_t>;
// compute hour angle and declination from azimuth and altitude: hadec2azalt(ha, dec, az, alt)
{
t.hadec2azalt(std::declval<typename T::coord_t>(), std::declval<typename T::coord_t>(),
std::declval<typename T::coord_t&>(), std::declval<typename T::coord_t&>())
} -> std::same_as<typename T::error_t>;
// compute azimuth and altitude from hour angle and declination: azalt2hadec(az, alt, ha, dec)
{
t.azalt2hadec(std::declval<typename T::coord_t>(), std::declval<typename T::coord_t>(),
std::declval<typename T::coord_t&>(), std::declval<typename T::coord_t&>())
} -> std::same_as<typename T::error_t>;
// compute parallactic angle: hadec2pa(ha, dec, pa)
{
t.hadec2pa(std::declval<typename T::coord_t>(), std::declval<typename T::coord_t>(),
std::declval<typename T::pa_t&>())
} -> std::same_as<typename T::error_t>;
// transform coordinates according to its pair types and time points (a high-level wrapper):
//
// coord2coord(coord_pair_kind_from, x_from, y_from, time_point_from, coord_pair_kind_to, x_to, y_to, time_point_to)
//
// (x_*, y_*) = (AZ, ZD) if coord_pair_kind_* == MccCoordPairKind::COORDS_KIND_AZZD
// (x_*, y_*) = (AZ, ALT) if coord_pair_kind_* == MccCoordPairKind::COORDS_KIND_AZALT
// (x_*, y_*) = (HA, DEC) if coord_pair_kind_* == MccCoordPairKind::COORDS_KIND_HADEC_APP (apparent)
// (x_*, y_*) = (RA, DEC) if coord_pair_kind_* == MccCoordPairKind::COORDS_KIND_RADEC_APP (apparent)
// (x_*, y_*) = (RA, DEC) if coord_pair_kind_* == MccCoordPairKind::COORDS_KIND_RADEC_ICRS (ICRS)
//
// if coord_pair_kind_* and time_point_* are equal then x_to = x_from, y_to = y_from
{
t.coord2coord(std::declval<MccCoordPairKind>(), std::declval<typename T::coord_t>(),
std::declval<typename T::coord_t>(), std::declval<typename T::time_point_t>(),
std::declval<MccCoordPairKind>(), std::declval<typename T::coord_t&>(),
std::declval<typename T::coord_t&>(), std::declval<typename T::time_point_t>())
} -> std::same_as<typename T::error_t>;
// compute equation of origins
{
t.eqOrigins(std::declval<typename T::juldate_t>(), std::declval<typename T::eo_t&>())
} -> std::same_as<typename T::error_t>;
/* time-related methods */
// this static method must return a current time point
{ T::timePointNow() } -> std::same_as<typename T::time_point_t>;
// Gregorian Calendar time point to Julian Date: greg2jul(time_point, jd)
{
t.greg2jul(std::declval<typename T::time_point_t>(), std::declval<typename T::juldate_t&>())
} -> std::same_as<typename T::error_t>;
// apparent sideral time: apparentSiderTime(jd, st, islocal)
// if islocal == false then the method must return the Greenwich apparent sideral time, otherwise - local one
{
t.apparentSiderTime(std::declval<typename T::juldate_t>(), std::declval<typename T::sideral_time_t&>(),
std::declval<bool>())
} -> std::same_as<typename T::error_t>;
/* atmospheric refraction-related methods */
// compute refraction-related quantities: refraction(refr_params)
{ t.refraction(std::declval<typename T::refract_result_t&>()) } -> std::same_as<typename T::error_t>;
// compute refraction correction for given altitude: refractCorrection(alt, refr_params, refr_corr)
{
t.refractCorrection(std::declval<typename T::coord_t>(), std::declval<typename T::refract_result_t>(),
std::declval<typename T::coord_t&>())
} -> std::same_as<typename T::error_t>;
};
/* A VERY GENERIC MOUNT HARDWARE CONCEPT */
template <typename T>
concept mcc_mount_hardware_c = !std::copyable<T> && std::movable<T> && requires(T t, const T t_const) {
requires mcc_error_c<typename T::error_t>;
typename T::time_point_t;
typename T::coord_t;
{ t_const.id() } -> mcc_formattable;
// a type that defines at least HW_MOVE_SLEWING, HW_MOVE_ADJUSTING, HW_MOVE_TRACKING
// and HW_MOVE_GUIDING compile-time constants. The main purpose of this type is a
// possible tunning of hardware setPos-related commands
//
// e.g. an implementations can be as follows:
// enum class hw_moving_type_t: int {HW_MOVE_SLEWING, HW_MOVE_ADJUSTING, HW_MOVE_TRACKING, HW_MOVE_GUIDING}
//
// struct hw_moving_type_t {
// uint16_t HW_MOVE_SLEWING = 111;
// uint16_t HW_MOVE_ADJUSTING = 222;
// uint16_t HW_MOVE_TRACKING = 333;
// uint16_t HW_MOVE_GUIDING = 444;
// }
requires requires(typename T::hw_moving_type_t state) {
[]() {
// hardware was asked for slewing (move to given celestial point)
static constexpr auto v1 = T::hw_moving_type_t::HW_MOVE_SLEWING;
// hardware was asked for adjusting after slewing ("seeking" given celestial point at the end of slewing
// process)
static constexpr auto v2 = T::hw_moving_type_t::HW_MOVE_ADJUSTING;
// hardware was asked for tracking (track given celestial point)
static constexpr auto v3 = T::hw_moving_type_t::HW_MOVE_TRACKING;
// hardware was asked for guiding (small corrections to track given celestial point)
static constexpr auto v4 = T::hw_moving_type_t::HW_MOVE_GUIDING;
}();
};
// a class that contains at least time of measurement, coordinates for x,y axes and its moving rates
requires requires(typename T::axes_pos_t pos) {
requires std::same_as<decltype(pos.time_point), typename T::time_point_t>; // time point
requires std::same_as<decltype(pos.x), typename T::coord_t>; // co-longitude coordinate
requires std::same_as<decltype(pos.y), typename T::coord_t>; // co-latitude coordinate
requires std::same_as<decltype(pos.xrate), typename T::coord_t>;
requires std::same_as<decltype(pos.yrate), typename T::coord_t>;
requires std::same_as<decltype(pos.moving_type), typename T::hw_moving_type_t>; // a 'hint' to hardware
};
// set positions (angles) of mount axes with given speeds
// NOTE: exact interpretation (or even ignoring) of the given moving speeds is subject of a hardware-class
// implementation.
// e.g. it can be maximal speeds at slewing ramp
{ t.setPos(std::declval<typename T::axes_pos_t>()) } -> std::same_as<typename T::error_t>;
// get current positions and speeds (angles) of mount axes
{ t.getPos(std::declval<typename T::axes_pos_t&>()) } -> std::same_as<typename T::error_t>;
{ t.stop() } -> std::same_as<typename T::error_t>; // stop any moving
{ t.init() } -> std::same_as<typename T::error_t>; // initialize hardware
};
/* POINTING-ERROR CORRECTION */
template <typename T>
concept mcc_mount_pec_c = requires(T t) {
requires mcc_error_c<typename T::error_t>;
typename T::coord_t;
// the 'T' class must contain static constexpr member of 'MccMountType' type
requires requires {
requires std::same_as<decltype(T::mountType), const MccMountType>;
[]() {
static constexpr MccMountType val = T::mountType;
return val;
}(); // to ensure 'mountType' can be used in compile-time context
};
// a class that contains at least .dx and .dy public fields
requires requires(typename T::pec_result_t res) {
requires std::same_as<decltype(res.dx), typename T::coord_t>;
requires std::same_as<decltype(res.dy), typename T::coord_t>;
};
{
t.compute(std::declval<const typename T::coord_t&>(), std::declval<const typename T::coord_t&>(),
std::declval<typename T::pec_result_t&>())
} -> std::same_as<typename T::error_t>;
};
/* MOUNT STATE TELEMETRY */
// a class that contains at least celestial (equatorial and horizontal) and harware coordinates
template <typename T>
concept mcc_mount_telemetry_data_c = std::movable<T> && requires(T telemetry) {
typename T::coord_t;
typename T::time_point_t;
// time point
requires std::same_as<decltype(telemetry.time_point), typename T::time_point_t>;
// target sky point ICRS and current coordinates
requires std::same_as<decltype(telemetry.tagRA), typename T::coord_t>; // apparent RA
requires std::same_as<decltype(telemetry.tagDEC), typename T::coord_t>; // apparent DEC
requires std::same_as<decltype(telemetry.tagHA), typename T::coord_t>; // hour angle
requires std::same_as<decltype(telemetry.tagAZ), typename T::coord_t>; // azimuth
requires std::same_as<decltype(telemetry.tagALT), typename T::coord_t>; // altitude
// mount current coordinates
requires std::same_as<decltype(telemetry.mntRA), typename T::coord_t>; // apparent RA
requires std::same_as<decltype(telemetry.mntDEC), typename T::coord_t>; // apparent DEC
requires std::same_as<decltype(telemetry.mntHA), typename T::coord_t>; // hour angle
requires std::same_as<decltype(telemetry.mntAZ), typename T::coord_t>; // azimuth
requires std::same_as<decltype(telemetry.mntALT), typename T::coord_t>; // altitude
requires std::same_as<decltype(telemetry.mntPosX), typename T::coord_t>; // hardware encoder X-axis position
requires std::same_as<decltype(telemetry.mntPosY), typename T::coord_t>; // hardware encoder Y-axis position
requires std::same_as<decltype(telemetry.mntRateX), typename T::coord_t>; // hardware encoder X-axis rate
requires std::same_as<decltype(telemetry.mntRateY), typename T::coord_t>; // hardware encoder Y-axis rate
// corrections to transform mount hardware coordinates to apparent
// (pointing error corrections)
requires std::same_as<decltype(telemetry.pecX), typename T::coord_t>;
requires std::same_as<decltype(telemetry.pecY), typename T::coord_t>;
};
template <typename T>
concept mcc_mount_telemetry_c = requires(T t, const T t_const) {
requires mcc_error_c<typename T::error_t>;
// // a class that at least contains celestial (equatorial and horizontal) coordinates
// requires requires(typename T::mount_telemetry_data_t telemetry) {
// typename T::mount_telemetry_data_t::coord_t;
// requires std::same_as<decltype(telemetry.mntRA), typename T::mount_telemetry_data_t::coord_t>; //
// apparent RA requires std::same_as<decltype(telemetry.mntDEC), typename
// T::mount_telemetry_data_t::coord_t>; // apparent DEC requires std::same_as<decltype(telemetry.mntHA),
// typename T::mount_telemetry_data_t::coord_t>;
// // hour angle requires std::same_as<decltype(telemetry.mntAZ), typename
// T::mount_telemetry_data_t::coord_t>;
// // azimuth requires std::same_as<decltype(telemetry.mntALT), typename
// T::mount_telemetry_data_t::coord_t>; // altitude
// };
requires mcc_mount_telemetry_data_c<typename T::mount_telemetry_data_t>;
{ t.update() } -> std::same_as<typename T::error_t>;
{ t.data(std::declval<typename T::mount_telemetry_data_t&>()) } -> std::same_as<typename T::error_t>;
};
// /* SLEW PARAMETERS */
// template <typename T>
// concept mcc_slew_params_c = std::movable<T> && requires(T t) {
// // input coordinates pair type (e.g. IRCS RA,DEC, Az,Alt and so on)
// requires std::same_as<decltype(t.coordPairKind), MccCoordPairKind>;
// typename T::coord_t;
// // co-longitude (e.g. RA or Az)
// requires std::same_as<decltype(t.x), typename T::coord_t>;
// // co-latitude (e.g. DEC or ZD)
// requires std::same_as<decltype(t.y), typename T::coord_t>;
// // stop after slewing
// requires std::convertible_to<decltype(t.stop), bool>;
// };
/* GENERIC SLEW AND GUIDING MODEL */
template <typename T>
concept mcc_slew_model_c = requires(T t) {
requires mcc_error_c<typename T::error_t>;
// requires mcc_slew_params_c<typename T::slew_params_t>;
requires mcc_celestial_point_c<typename T::slew_point_t>;
// { t.slew(std::declval<typename T::slew_params_t>()) } -> std::same_as<typename T::error_t>;
{ t.slew(std::declval<typename T::slew_point_t>()) } -> std::same_as<typename T::error_t>;
{ t.stop() } -> std::same_as<typename T::error_t>;
};
template <typename T>
concept mcc_guiding_model_c = requires(T t) {
requires mcc_error_c<typename T::error_t>;
requires mcc_celestial_point_c<typename T::guiding_point_t>;
// start process of guiding
{ t.guiding(std::declval<typename T::guiding_point_t>()) } -> std::same_as<typename T::error_t>;
{ t.stop() } -> std::same_as<typename T::error_t>;
};
/* MOUNT PROHIBITED ZONE */
struct MccPzoneAbstractInterface {
bool inZone(this auto&& self, mcc_mount_telemetry_data_c auto const& telemetry_data)
{
using self_t = decltype(self);
if constexpr (std::same_as<std::remove_cvref_t<self_t>, MccPzoneAbstractInterface>) {
static_assert(false, "Call an empty MccPzoneAbstractInterface::inZone method");
} else {
return std::forward<self_t>(self).inZone(telemetry_data);
}
}
bool inZone(this auto&& self, mcc_celestial_point_c auto const& sky_point)
{
using self_t = decltype(self);
if constexpr (std::same_as<std::remove_cvref_t<self_t>, MccPzoneAbstractInterface>) {
static_assert(false, "Call an empty MccPzoneAbstractInterface::inZone method");
} else {
return std::forward<self_t>(self).inZone(sky_point);
}
}
// returns a time to reach the zone
auto timeTo(this auto&& self, mcc_mount_telemetry_data_c auto const& telemetry_data)
{
using self_t = decltype(self);
if constexpr (std::same_as<std::remove_cvref_t<self_t>, MccPzoneAbstractInterface>) {
static_assert(false, "Call an empty MccPzoneAbstractInterface::timeTo method");
} else {
return std::forward<self_t>(self).timeTo(telemetry_data);
}
}
auto timeTo(this auto&& self, mcc_celestial_point_c auto const& sky_point)
{
using self_t = decltype(self);
if constexpr (std::same_as<std::remove_cvref_t<self_t>, MccPzoneAbstractInterface>) {
static_assert(false, "Call an empty MccPzoneAbstractInterface::timeTo method");
} else {
return std::forward<self_t>(self).timeTo(sky_point);
}
}
// returns a time to exit from the zone
auto timeFrom(this auto&& self, mcc_mount_telemetry_data_c auto const& telemetry_data)
{
using self_t = decltype(self);
if constexpr (std::same_as<std::remove_cvref_t<self_t>, MccPzoneAbstractInterface>) {
static_assert(false, "Call an empty MccPzoneAbstractInterface::timeFrom method");
} else {
return std::forward<self_t>(self).timeFrom(telemetry_data);
}
}
auto timeFrom(this auto&& self, mcc_celestial_point_c auto const& sky_point)
{
using self_t = decltype(self);
if constexpr (std::same_as<std::remove_cvref_t<self_t>, MccPzoneAbstractInterface>) {
static_assert(false, "Call an empty MccPzoneAbstractInterface::timeFrom method");
} else {
return std::forward<self_t>(self).timeFrom(sky_point);
}
}
};
template <typename T, typename TelemetryDataT>
concept mcc_prohibited_zone_c =
mcc_mount_telemetry_data_c<TelemetryDataT> && std::movable<T> && requires(T t, const T t_const) {
typename T::coord_t;
// typename T::time_point_t;
requires mcc_time_duration_c<typename T::duration_t>;
// static constexpr member to represent infinite duration
requires requires {
requires std::same_as<decltype(T::infiniteDuration), typename T::duration_t const>;
[]() {
constexpr auto val = T::infiniteDuration;
return val;
};
};
// static constexpr member to represent zero duration
requires requires {
requires std::same_as<decltype(T::zeroDuration), typename T::duration_t const>;
[]() {
constexpr auto val = T::zeroDuration;
return val;
};
};
// return a name of the zone
{ t_const.name() } -> mcc_formattable;
// check if given coordinates are into the zone.
{ t.inZone(std::declval<const TelemetryDataT&>()) } -> std::convertible_to<bool>;
// a time duration to reach the zone.
// special values the method must return:
// 'infiniteDuration' if the given sky point never reaches the zone
// 0 (zero duration) if the given sky point is already in the zone or it never exits from the zone
{ t.timeTo(std::declval<const TelemetryDataT&>()) } -> std::same_as<typename T::duration_t>;
// a time duration to exit from the zone.
// special values the method must return:
// 0 (zero duration) if the given sky point already exited from the zone or it never reaches the zone
{ t.timeFrom(std::declval<const TelemetryDataT&>()) } -> std::same_as<typename T::duration_t>;
};
// an input range of prohibited zones
template <typename T, typename TelemetryDataT>
concept mcc_irange_of_pzones_c = mcc_mount_telemetry_data_c<TelemetryDataT> && std::ranges::input_range<T> &&
mcc_prohibited_zone_c<std::ranges::range_value_t<T>, TelemetryDataT>;
// // a concept for a callable with the first argument of type satisfied to 'mcc_prohibited_zone_c'
// template <typename T, typename TelemetryDataT>
// concept mcc_pzone_foreach_func_c = mcc_is_callable<T> && mcc_mount_telemetry_data_c<TelemetryDataT> &&
// mcc_prohibited_zone_c<mcc_func_arg1_t<T>, TelemetryDataT>;
// There is no way to declare a concept of class with templated method so one needs to define
// a generic interface of prohibited zones holder/container explicitly
template <mcc_mount_telemetry_data_c TelemetryDataT>
struct MccPZoneAbstractContainer {
virtual ~MccPZoneAbstractContainer() = default;
// must return a size of the container after the addition of the given zone
template <mcc_prohibited_zone_c<TelemetryDataT> ZT>
size_t pzAddZone(this auto&& self, ZT zone)
{
using self_t = decltype(self);
if constexpr (std::same_as<std::remove_cvref_t<self_t>, MccPZoneAbstractContainer>) {
static_assert(false, "Call an empty MccPZoneAbstractContainer::pzAddZone method");
} else {
return std::forward<self_t>(self).pzAddZone(std::move(zone));
}
}
// clear the container
auto pzClearZones(this auto&& self)
{
using self_t = decltype(self);
if constexpr (std::same_as<std::remove_cvref_t<self_t>, MccPZoneAbstractContainer>) {
static_assert(false, "Call an empty MccPZoneAbstractContainer::pzClearZones method");
} else {
return std::forward<self_t>(self).pzClearZones();
}
}
// must return the size of the container (number of zones)
size_t pzSize(this auto&& self)
{
using self_t = decltype(self);
if constexpr (std::same_as<std::remove_cvref_t<self_t>, MccPZoneAbstractContainer>) {
static_assert(false, "Call an empty MccPZoneAbstractContainer::pzSize method");
} else {
return std::forward<self_t>(self).pzSize();
}
}
// must return true if the given telemetry coordinates are in any of zones in the container and
// false otherwise
template <typename RT>
bool pzInZone(this auto&& self, const TelemetryDataT& tdata, RT& result)
{
using self_t = decltype(self);
if constexpr (std::same_as<std::remove_cvref_t<self_t>, MccPZoneAbstractContainer>) {
static_assert(false, "Call an empty MccPZoneAbstractContainer::pzInZone method");
} else {
return std::forward<self_t>(self).pzInZone(tdata, result);
}
}
template <typename RT>
auto pzTimeTo(this auto&& self, const TelemetryDataT& tdata, RT& result)
{
using self_t = decltype(self);
if constexpr (std::same_as<std::remove_cvref_t<self_t>, MccPZoneAbstractContainer>) {
static_assert(false, "Call an empty MccPZoneAbstractContainer::pzInZone method");
} else {
return std::forward<self_t>(self).pzTimeTo(tdata, result);
}
}
template <typename RT>
auto pzTimeFrom(this auto&& self, const TelemetryDataT& tdata, RT& result)
{
using self_t = decltype(self);
if constexpr (std::same_as<std::remove_cvref_t<self_t>, MccPZoneAbstractContainer>) {
static_assert(false, "Call an empty MccPZoneAbstractContainer::pzInZone method");
} else {
return std::forward<self_t>(self).pzTimeFrom(tdata, result);
}
}
protected:
MccPZoneAbstractContainer() = default;
};
// a full concept for prohibited zones container
template <typename T, typename TelemetryDataT>
concept mcc_mount_pzones_container_c = std::derived_from<T, MccPZoneAbstractContainer<TelemetryDataT>> && requires {
// common time duration type for zones 'timeTo' and 'timeFrom' methods
requires mcc_time_duration_c<typename T::duration_t>;
// static constexpr member to represent infinite duration
requires requires {
requires std::same_as<decltype(T::infiniteDuration), typename T::duration_t const>;
[]() {
constexpr auto val = T::infiniteDuration;
return val;
};
};
// static constexpr member to represent zero duration
requires requires {
requires std::same_as<decltype(T::zeroDuration), typename T::duration_t const>;
[]() {
constexpr auto val = T::zeroDuration;
return val;
};
};
};
/* MOUNT GENERIC CONTROLS */
template <typename T>
concept mcc_mount_controls_c = requires(T t) {
// concept mcc_mount_controls_c = std::move_constructible<T> && std::movable<T> && requires(T t) {
requires mcc_astrom_engine_c<decltype(t.astrometryEngine)>;
requires mcc_mount_pec_c<decltype(t.PEC)>;
requires mcc_mount_hardware_c<decltype(t.hardware)>;
requires mcc_mount_telemetry_c<decltype(t.telemetry)>;
requires mcc_slew_model_c<decltype(t.slewModel)>;
requires mcc_guiding_model_c<decltype(t.guidingModel)>;
// a std::tuple of prohibited zones
// []<mcc_prohibited_zone_c<typename decltype(t.telemetry)::mount_telemetry_data_t>... Ts>(std::tuple<Ts...>) {
// }(t.prohibitedZones);
// requires mcc_tuple_c<decltype(t.prohibitedZones)>;
requires mcc_irange_of_pzones_c<decltype(t.prohibitedZones),
typename decltype(t.telemetry)::mount_telemetry_data_t>;
};
/* GENERIC MOUNT CONCEPTS */
template <typename T>
concept mcc_mount_c = requires(T t) {
// the class must define typename 'mount_controls_t' and it must be its base class
requires mcc_mount_controls_c<typename T::mount_controls_t>;
requires std::derived_from<T, typename T::mount_controls_t>;
// deduced from 'mount_controls_t' typenames
requires mcc_mount_telemetry_c<typename T::mount_telemetry_t>;
requires std::same_as<typename T::mount_telemetry_data_t, typename T::mount_telemetry_t::mount_telemetry_data_t>;
requires mcc_astrom_engine_c<typename T::astrom_engine_t>;
requires mcc_mount_pec_c<typename T::pec_t>;
requires mcc_mount_hardware_c<typename T::hardware_t>;
requires mcc_slew_model_c<typename T::slew_model_t>;
requires mcc_guiding_model_c<typename T::guiding_model_t>;
// public methods
{
t.mountTelemetryData(std::declval<typename T::mount_telemetry_data_t&>())
} -> std::same_as<typename T::mount_telemetry_t::error_t>;
{
t.slewMount(std::declval<typename T::slew_model_t::slew_point_t>())
} -> std::same_as<typename T::slew_model_t::error_t>;
{
t.guidingTarget(std::declval<typename T::guiding_model_t::guiding_point_t>())
} -> std::same_as<typename T::guiding_model_t::error_t>;
};
// generic with public logging methods
template <typename T>
concept mcc_log_mount_c = mcc_mount_c<T> && mcc_logger_c<T>;
// a generic Finite State Machine mount with logging methods
template <typename T>
concept mcc_fsm_log_mount_c = std::derived_from<T, fsm::MccFiniteStateMachine> && mcc_log_mount_c<T>;
} // namespace mcc::traits
/* CHECK LIBRARY-WIDE CLASS DECLARATIONS FOR ITS CONCEPTS SATISFACTION */
namespace mcc
{
static_assert(traits::mcc_logger_c<MccNullLogger>, "MccNullLogger INVALID DECLARATION!");
} // namespace mcc