#pragma once /* MOUNT CONTROL COMPONENTS LIBRARY */ /* AN REFERENCE "PERIODIC-ERROR-CORRECTION" CLASS IMPLEMENTATION */ #include #include "fitpack/fitpack.h" #include "mcc_mount_coord.h" namespace mcc { namespace traits { template concept mcc_mount_pec_c = requires(T t, const T t_const, XT x, YT y) { typename T::pec_data_t; typename T::pec_result_t; { t.setData(std::declval()) }; { t_const.getData() } -> std::same_as; { t.compute(std::declval(), std::declval()) } -> std::same_as; }; } // namespace traits // type of PEC corrections (algorithm used): // PEC_TYPE_GEOMETRY - "classic" geometry-based correction coefficients // PEC_TYPE_GEOMETRY_BSPLINE - previous one and additional 2D B-spline corrections // PEC_TYPE_BSPLINE - pure 2D B-spline corrections enum class MccMountDefaultPECType { PEC_TYPE_GEOMETRY, PEC_TYPE_GEOMETRY_BSPLINE, PEC_TYPE_BSPLINE }; class MccMountDefaultPEC { public: struct pec_result_t { MccAngle dx, dy; }; // "classic" geometric PEC coefficients struct pec_geom_coeffs_t { typedef double coeff_t; coeff_t zeroPointX; coeff_t zeroPointY; coeff_t collimationErr; // tube collimation error coeff_t nonperpendErr; // X-Y axes nonperpendicularity coeff_t misalignErr1; // misalignment of hour-angle/azimuth axis: left-right for equatorial, East-West for // alt-azimuthal coeff_t misalignErr2; // misalignment of hour-angle/azimuth axis: vertical for equatorial, North-South for // alt-azimuthal coeff_t tubeFlexure; coeff_t forkFlexure; coeff_t DECaxisFlexure; // declination axis flexure }; // B-splines coefficients struct pec_bspline_coeffs_t { typedef double knot_t; typedef double coeff_t; size_t bsplDegreeX = 3; size_t bsplDegreeY = 3; std::vector knotsX{}; std::vector knotsY{}; std::vector coeffsX{}; std::vector coeffsY{}; }; struct pec_data_t { MccMountDefaultPECType type{MccMountDefaultPECType::PEC_TYPE_GEOMETRY}; double siteLatitude{0.0}; // in radians pec_geom_coeffs_t geomCoefficients{}; pec_bspline_coeffs_t bsplineCoefficients{}; }; // constructors MccMountDefaultPEC(pec_data_t pdata) : _pecData(std::move(pdata)), _phi(_pecData.siteLatitude), _geomCoeffs(_pecData.geomCoefficients), _bsplCoeffs(_pecData.bsplineCoefficients) { } void setData(pec_data_t pdata) { std::lock_guard lock(_pecDataMutex); _pecData = std::move(pdata); _phi = _pecData.siteLatitude; _geomCoeffs = _pecData.geomCoefficients; _bsplCoeffs = _pecData.bsplineCoefficients; } pec_data_t getData() const { std::lock_guard lock(_pecDataMutex); return _pecData; } void setType(MccMountDefaultPECType type) { std::lock_guard lock(_pecDataMutex); _pecData.type = type; } MccMountDefaultPECType getType() const { std::lock_guard lock(_pecDataMutex); return _pecData.type; } // X and Y axis encoder coordinates template XT, std::derived_from YT> pec_result_t compute(const XT& x, const YT& y) { static constexpr MccCoordPairKind coord_kind = traits::mcc_type_pair_hash(); pec_result_t res{0.0, 0.0}; std::lock_guard lock(_pecDataMutex); if constexpr (coord_kind == MccCoordPairKind::COORDS_KIND_HADEC_APP) { if (_pecData.type == MccMountDefaultPECType::PEC_TYPE_GEOMETRY) { const auto cosPhi = std::cos(_phi); const auto sinPhi = std::sin(_phi); const auto tanY = std::tan(y); const auto sinX = std::sin(x); const auto cosX = std::cos(x); const auto cosY = std::cos(y); if (utils::isEqual(cosY, 0.0)) { res.dx = _geomCoeffs.zeroPointX; } else { res.dx = _geomCoeffs.zeroPointX + _geomCoeffs.collimationErr / cosY + _geomCoeffs.nonperpendErr * tanY - _geomCoeffs.misalignErr1 * cosX * tanY + _geomCoeffs.misalignErr2 * sinX * tanY + _geomCoeffs.tubeFlexure * cosPhi * sinX / cosY - _geomCoeffs.DECaxisFlexure * (cosPhi * cosX + sinPhi * tanY); } res.dy = _geomCoeffs.zeroPointY + _geomCoeffs.misalignErr1 * sinX + _geomCoeffs.misalignErr2 * cosX + _geomCoeffs.tubeFlexure * (cosPhi * cosX * std::sin(y) - sinPhi * cosY); if (!utils::isEqual(cosX, 0.0)) { res.dy += _geomCoeffs.forkFlexure / cosX; } } if (_pecData.type == MccMountDefaultPECType::PEC_TYPE_BSPLINE || _pecData.type == MccMountDefaultPECType::PEC_TYPE_GEOMETRY_BSPLINE) { double spl_valX, spl_valY; int ret = fitpack::fitpack_eval_spl2d(_bsplCoeffs.knotsX, _bsplCoeffs.knotsY, _bsplCoeffs.coeffsX, x, y, spl_valX, _bsplCoeffs.bsplDegreeX, _bsplCoeffs.bsplDegreeY); if (ret) { res.dx = std::numeric_limits::quiet_NaN(); res.dy = std::numeric_limits::quiet_NaN(); return res; } ret = fitpack::fitpack_eval_spl2d(_bsplCoeffs.knotsX, _bsplCoeffs.knotsY, _bsplCoeffs.coeffsY, x, y, spl_valY, _bsplCoeffs.bsplDegreeX, _bsplCoeffs.bsplDegreeY); if (ret) { res.dx = std::numeric_limits::quiet_NaN(); res.dy = std::numeric_limits::quiet_NaN(); return res; } res.dx += spl_valX; res.dy += spl_valY; } } else if constexpr (coord_kind == MccCoordPairKind::COORDS_KIND_AZALT) { } else { static_assert(false, "UNSUPPORTED"); } return res; } // X and Y apparent equatorial/altazimuthal coordinates (not corrected for refraction) template XT, std::derived_from YT> pec_result_t computeInverse(const XT& x, const YT& y) { static constexpr MccCoordPairKind coord_kind = traits::mcc_type_pair_hash(); pec_result_t res{0.0, 0.0}; if constexpr (coord_kind == MccCoordPairKind::COORDS_KIND_HADEC_APP) { } else if constexpr (coord_kind == MccCoordPairKind::COORDS_KIND_AZALT) { } else { static_assert(false, "UNSUPPORTED"); } return res; } private: pec_data_t _pecData; double& _phi; pec_geom_coeffs_t& _geomCoeffs; pec_bspline_coeffs_t& _bsplCoeffs; mutable std::mutex _pecDataMutex; }; } // namespace mcc