#include #include // #include "../mcc_coord.h" #include "../mcc_mount_astro_erfa.h" #include "../mcc_traits.h" #include "../mount_astrom.h" // BTA coords from maps.yandex.ru: 43.646711, 41.440732 int main(int argc, char* argv[]) { int ecode = 0; if (argc < 2) { std::cerr << "Usage: " << argv[0] << " bulletinA-filename\n"; exit(1); } std::ifstream ist(argv[1]); if (!ist) { std::cerr << "Invalid filename!\n"; exit(1); } mcc::astrom::MccIersBulletinA bullA; bullA.dump(std::cout); std::cout << "\n\n"; mcc::astrom::MccLeapSeconds lps; lps.dump(std::cout); std::cout << "\n\n"; bool ok = bullA.load(ist); bullA.dump(std::cerr); ist.close(); std::cout << "\n\n\n------------------\n"; constexpr auto nnn = mcc::astrom::MccLeapSeconds::real_secs_t{std::numeric_limits::quiet_NaN()}; auto now = std::chrono::system_clock::now(); // std::cout << "LEAP SECS for now: " << lps[now].value_or(std::numeric_limits::quiet_NaN()) << "\n"; std::cout << "LEAP SECS for now: " << lps[now].value_or(nnn) << "\n"; // std::cout << "DUT1 for now: " << bullA.DUT1(now).value_or(std::numeric_limits::quiet_NaN()) << " (" << // now std::cout << "DUT1 for now: " << bullA.DUT1(now).value_or(nnn) << " (" << now << ")\n"; double mjd = 61077.4; // std::cout << "DUT1 for MJD = " << mjd << ": " << // bullA.DUT1(mjd).value_or(std::numeric_limits::quiet_NaN()) std::cout << "DUT1 for MJD = " << mjd << ": " << bullA.DUT1(mjd).value_or(nnn) << "\n"; auto st = mcc::astrom::mcc_julday(now, mjd); std::cout << "MJD for now: " << std::setprecision(19) << mjd << " (" << now << ")\n"; // double pres = 786.6; // double temp = 0.0; // double hum = 0.8; // double A, B; // erfa::eraRefco(pres, temp, hum, 0.5, &A, &B); // const double rr = 180.0 / std::numbers::pi * 60.0; // std::cout << "A(arcmin) = " << A * rr << "; B(arcmin) = " << B * rr << "\n"; float alt_lim = 10.0; std::string_view ra_str = "06:30:00.0", dec_str = "00:00:00.0"; std::cout << "\n\nTimes to object (RA = " << ra_str << ", DEC = " << dec_str << ") sets to given altitude (" << alt_lim << " degrees):\n"; using namespace std::chrono_literals; // auto stm = mcc::astrom::mcc_time_to_alt_limit(alt_lim, ra_str, dec_str, 43.646711, 41.440732, // std::chrono::system_clock::now(), 0.041s, 32.184s, 37.0s); // auto stm_d = mcc::astrom::mcc_chrono_radians{stm}; // std::cout << "STM: " << stm * 12.0 / std::numbers::pi * 60.0 << " minutes\n"; // std::cout << "STM: " << std::chrono::duration_cast(stm) << " minutes\n"; alt_lim = 85.0; ra_str = "02:30:00.0", dec_str = "45:00:00.0"; std::cout << "\n\nTimes to object (RA = " << ra_str << ", DEC = " << dec_str << ") sets to given altitude (" << alt_lim << " degrees):\n"; auto stm = mcc::astrom::mcc_time_to_alt({alt_lim, mcc::mcc_degrees}, {ra_str, mcc::mcc_hms}, dec_str, 43.646711_degs, 41.440732_degs, std::chrono::system_clock::now(), 0.041s, 32.184s, 37.0s); // stm = mcc::astrom::mcc_time_to_alt_limit(alt_lim, ra_str, dec_str, 43.646711, 41.440732, // std::chrono::system_clock::now(), 0.041s, 32.184s, 37.0s); // auto stm_d = mcc::astrom::mcc_chrono_radians{stm}; // std::cout << "STM: " << stm * 12.0 / std::numbers::pi * 60.0 << " minutes\n"; std::cout << "STM: " << stm.first << ", " << stm.second << " seconds\n"; std::cout << "STM: " << std::chrono::duration_cast(stm.first) << ", " << std::chrono::duration_cast(stm.second) << " minutes\n"; std::cout << "\n\n\n"; const size_t N = 1000; double mjds[N]; now = std::chrono::system_clock::now(); st = mcc::astrom::mcc_julday(now, mjds, std::chrono::milliseconds(100)); std::cout << std::format("comp time for {} MJDs = {}\n", N, std::chrono::system_clock::now() - now); std::cout << std::format("MIN MJD: {:.16f}; \nMAX MJD: {:.16f}\n", mjds[0], mjds[N - 1]); double elong = 43.646711 * std::numbers::pi / 180.0; double phi = 41.440732 * std::numbers::pi / 180.0; double aob, zob, hob, dob, rob, eo; now = std::chrono::system_clock::now(); for (auto& el : mjds) { st = mcc::astrom::erfa::eraAtco13(1.343523, 0.32352345, 0.0, 0.0, 0.0, 0.0, ERFA_DJM0, el, 0.041, elong, phi, 2100.0, 0.0, 0.0, 700.0, 10.0, 0.8, 0.5, &aob, &zob, &hob, &dob, &rob, &eo); // st = erfa::eraAtco13(1.343523, 0.32352345, 0.0, 0.0, 0.0, 0.0, ERFA_DJM0, el, 0.041, elong, phi, 2100.0, 0.0, // 0.0, 700.0, 10.0, 0.8, 0.5, &aob, &zob, &hob, &dob, &rob, &eo); } std::cout << std::format( "comp time for {} coordinate transf = {}\n", N, std::chrono::duration_cast(std::chrono::system_clock::now() - now)); std::cout << "\n\n\nMccCoordinate class test:\n"; mcc::MccAngle ra("12:00:00", mcc::mcc_hms); std::cout << "sin(12h) = " << std::sin(ra) << "\n"; std::cout << "cos(12h) = " << std::cos(ra) << "\n"; ra = "18:00:00"_hms; std::cout << "sin(18h) = " << std::sin(ra) << "\n"; std::cout << "cos(18h) = " << std::cos(ra) << "\n"; ra = mcc::MccAngle{45.0, mcc::mcc_degrees}; std::cout << "sin(45) = " << std::sin(ra) << "\n"; std::cout << "cos(45) = " << std::cos(ra) << "\n"; std::cout << ra.sexagesimal(false, 4) << "\n"; std::cout << "\n\n\n\n"; using engine_t = mcc::astrom::erfa::MccMountAstromEngineERFA<>; engine_t::engine_state_t state; state.lon = 41.440732_degs; state.lat = 43.646711_degs; state.elev = 2100.0; state.meteo = {10.0, 0.5, 1010.0}; std::cout << "LON = " << state.lon.sexagesimal() << "\n"; std::cout << "LAT = " << state.lat.sexagesimal() << "\n\n"; engine_t erfa(state); engine_t::juldate_t jd{60861.72}; now = std::chrono::system_clock::now(); erfa.greg2jul(now, jd); std::cout << "MJD(" << now << ") = " << jd.mjd << "\n"; mcc::MccAngle lst; erfa.apparentSiderTime(jd, lst, true); std::cout << "LST(MJD = " << jd.mjd << ") = " << lst.sexagesimal(true) << "\n\n"; mcc::MccAngle ra1{"10:00:00", mcc::mcc_hms}, dec1{"68:25:10.43"}, ra_o, dec_o, ha1, az1, alt1; std::cout << "RA = " << ra1.sexagesimal(true) << ", DEC = " << dec1.sexagesimal() << "\n"; auto res = erfa.icrs2obs(ra1, dec1, jd, ra_o, dec_o, ha1, az1, alt1); mcc::MccAngle eor; std::cout << "ret code (icrs2obs) = " << erfa.errorString(res) << "\n"; std::cout << "alt = " << alt1.sexagesimal() << "\n"; std::cout << "az = " << az1.sexagesimal() << "\n"; std::cout << "HA_app = " << ha1.sexagesimal(true) << "\n"; std::cout << "RA_app = " << ra_o.sexagesimal(true) << "\n"; std::cout << "DEC_app = " << dec_o.sexagesimal() << "\n"; res = erfa.eqOrigins(jd, eor); std::cout << "eq of origins = " << eor.sexagesimal(true) << "\n"; std::cout << "RA_app_comp = " << (lst - ha1 + eor).sexagesimal(true) << "\n"; return ecode; }