/* * This file is part of the libsidservo project. * Copyright 2025 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* * main functions to fill struct `mount_t` */ #include #include #include #include #include #include "main.h" #include "movingmodel.h" #include "serial.h" #include "ssii.h" conf_t Conf = {0}; // parameters for model static movemodel_t *Xmodel, *Ymodel; // radians, rad/sec, rad/sec^2 static limits_t Xlimits = { .min = {.coord = -3.1241, .speed = 1e-8, .accel = 1e-6}, .max = {.coord = 3.1241, .speed = MCC_MAX_X_SPEED, .accel = MCC_X_ACCELERATION}}, Ylimits = { .min = {.coord = -3.1241, .speed = 1e-8, .accel = 1e-6}, .max = {.coord = 3.1241, .speed = MCC_MAX_Y_SPEED, .accel = MCC_Y_ACCELERATION}} ; static mcc_errcodes_t shortcmd(short_command_t *cmd); /** * @brief nanotime - monotonic time from first run * @return time in seconds */ double nanotime(){ static struct timespec *start = NULL; struct timespec now; if(!start){ start = malloc(sizeof(struct timespec)); if(!start) return -1.; if(clock_gettime(CLOCK_MONOTONIC, start)) return -1.; } if(clock_gettime(CLOCK_MONOTONIC, &now)) return -1.; double nd = ((double)now.tv_nsec - (double)start->tv_nsec) * 1e-9; double sd = (double)now.tv_sec - (double)start->tv_sec; return sd + nd; } /** * @brief quit - close all opened and return to default state */ static void quit(){ if(Conf.RunModel) return; for(int i = 0; i < 10; ++i) if(SSstop(TRUE)) break; DBG("Close all serial devices"); closeSerial(); DBG("Exit"); } void getModData(mountdata_t *mountdata){ if(!mountdata || !Xmodel || !Ymodel) return; double tnow = nanotime(); moveparam_t Xp, Yp; movestate_t Xst = Xmodel->get_state(&Xp); if(Xst == ST_MOVE) Xst = Xmodel->proc_move(&Xp, tnow); movestate_t Yst = Ymodel->get_state(&Yp); if(Yst == ST_MOVE) Yst = Ymodel->proc_move(&Yp, tnow); bzero(mountdata, sizeof(mountdata_t)); mountdata->motXposition.t = mountdata->encXposition.t = mountdata->motYposition.t = mountdata->encYposition.t = tnow; mountdata->motXposition.val = mountdata->encXposition.val = Xp.coord; mountdata->motYposition.val = mountdata->encYposition.val = Yp.coord; mountdata->encXspeed.t = mountdata->encYspeed.t = tnow; mountdata->encXspeed.val = Xp.speed; mountdata->encYspeed.val = Yp.speed; mountdata->millis = (uint32_t)(tnow * 1e3); } /** * @brief init - open serial devices and do other job * @param c - initial configuration * @return error code */ static mcc_errcodes_t init(conf_t *c){ FNAME(); if(!c) return MCC_E_BADFORMAT; Conf = *c; mcc_errcodes_t ret = MCC_E_OK; Xmodel = model_init(&Xlimits); Ymodel = model_init(&Ylimits); if(Conf.RunModel){ if(!Xmodel || !Ymodel) return MCC_E_FAILED; return MCC_E_OK; } if(!Conf.MountDevPath || Conf.MountDevSpeed < 1200){ DBG("Define mount device path and speed"); ret = MCC_E_BADFORMAT; }else if(!openMount()){ DBG("Can't open %s with speed %d", Conf.MountDevPath, Conf.MountDevSpeed); ret = MCC_E_MOUNTDEV; } if(Conf.SepEncoder){ if(!Conf.EncoderDevPath && !Conf.EncoderXDevPath){ DBG("Define encoder device path"); ret = MCC_E_BADFORMAT; }else if(!openEncoder()){ DBG("Can't open encoder device"); ret = MCC_E_ENCODERDEV; } } if(Conf.MountReqInterval > 1. || Conf.MountReqInterval < 0.05){ DBG("Bad value of MountReqInterval"); ret = MCC_E_BADFORMAT; } if(Conf.EncoderSpeedInterval < Conf.EncoderReqInterval * MCC_CONF_MIN_SPEEDC || Conf.EncoderSpeedInterval > MCC_CONF_MAX_SPEEDINT){ DBG("Wrong speed interval"); ret = MCC_E_BADFORMAT; } uint8_t buf[1024]; data_t d = {.buf = buf, .len = 0, .maxlen = 1024}; // read input data as there may be some trash on start if(!SSrawcmd(CMD_EXITACM, &d)) ret = MCC_E_FAILED; if(ret != MCC_E_OK) return ret; return updateMotorPos(); } // check coordinates (rad) and speeds (rad/s); return FALSE if failed // TODO fix to real limits!!! static int chkX(double X){ if(X > 2.*M_PI || X < -2.*M_PI) return FALSE; return TRUE; } static int chkY(double Y){ if(Y > 2.*M_PI || Y < -2.*M_PI) return FALSE; return TRUE; } static int chkXs(double s){ if(s < 0. || s > MCC_MAX_X_SPEED) return FALSE; return TRUE; } static int chkYs(double s){ if(s < 0. || s > MCC_MAX_Y_SPEED) return FALSE; return TRUE; } static mcc_errcodes_t slew2(const coordpair_t *target, slewflags_t flags){ (void)target; (void)flags; //if(Conf.RunModel) return ... ; if(MCC_E_OK != updateMotorPos()) return MCC_E_FAILED; //... setStat(MNT_SLEWING, MNT_SLEWING); //... return MCC_E_FAILED; } /** * @brief move2 - simple move to given point and stop * @param X - new X coordinate (radians: -pi..pi) or NULL * @param Y - new Y coordinate (radians: -pi..pi) or NULL * @return error code */ static mcc_errcodes_t move2(const coordpair_t *target){ if(!target) return MCC_E_BADFORMAT; if(!chkX(target->X) || !chkY(target->Y)) return MCC_E_BADFORMAT; if(Conf.RunModel){ double curt = nanotime(); moveparam_t param = {0}; param.coord = target->X; param.speed = MCC_MAX_X_SPEED; if(!model_move2(Xmodel, ¶m, curt)) return MCC_E_FAILED; param.coord = target->Y; param.speed = MCC_MAX_Y_SPEED; if(!model_move2(Ymodel, ¶m, curt)) return MCC_E_FAILED; } if(MCC_E_OK != updateMotorPos()) return MCC_E_FAILED; short_command_t cmd = {0}; DBG("x,y: %g, %g", target->X, target->Y); cmd.Xmot = target->X; cmd.Ymot = target->Y; cmd.Xspeed = MCC_MAX_X_SPEED; cmd.Yspeed = MCC_MAX_Y_SPEED; mcc_errcodes_t r = shortcmd(&cmd); if(r != MCC_E_OK) return r; setStat(MNT_SLEWING, MNT_SLEWING); return MCC_E_OK; } /** * @brief setspeed - set maximal speed over axis by text command * @param X (i) - max speed or NULL * @param Y (i) - -//- * @return errcode */ static mcc_errcodes_t setspeed(const coordpair_t *tagspeed){ if(!tagspeed || !chkXs(tagspeed->X) || !chkYs(tagspeed->Y)) return MCC_E_BADFORMAT; if(Conf.RunModel) return MCC_E_FAILED; int32_t spd = X_RS2MOTSPD(tagspeed->X); if(!SSsetterI(CMD_SPEEDX, spd)) return MCC_E_FAILED; spd = Y_RS2MOTSPD(tagspeed->Y); if(!SSsetterI(CMD_SPEEDY, spd)) return MCC_E_FAILED; return MCC_E_OK; } /** * @brief move2s - move to target with given max speed * @param target (i) - target or NULL * @param speed (i) - speed or NULL * @return */ static mcc_errcodes_t move2s(const coordpair_t *target, const coordpair_t *speed){ if(!target || !speed) return MCC_E_BADFORMAT; if(!chkX(target->X) || !chkY(target->Y)) return MCC_E_BADFORMAT; if(!chkXs(speed->X) || !chkYs(speed->Y)) return MCC_E_BADFORMAT; if(Conf.RunModel){ double curt = nanotime(); moveparam_t param = {0}; param.coord = target->X; param.speed = speed->X; if(!model_move2(Xmodel, ¶m, curt)) return MCC_E_FAILED; param.coord = target->Y; param.speed = speed->Y; if(!model_move2(Ymodel, ¶m, curt)) return MCC_E_FAILED; } if(MCC_E_OK != updateMotorPos()) return MCC_E_FAILED; short_command_t cmd = {0}; cmd.Xmot = target->X; cmd.Ymot = target->Y; cmd.Xspeed = speed->X; cmd.Yspeed = speed->Y; mcc_errcodes_t r = shortcmd(&cmd); if(r != MCC_E_OK) return r; setStat(MNT_SLEWING, MNT_SLEWING); return MCC_E_OK; } /** * @brief emstop - emergency stop * @return errcode */ static mcc_errcodes_t emstop(){ if(Conf.RunModel){ double curt = nanotime(); Xmodel->emergency_stop(curt); Ymodel->emergency_stop(curt); return MCC_E_OK; } if(!SSstop(TRUE)) return MCC_E_FAILED; return MCC_E_OK; } // normal stop static mcc_errcodes_t stop(){ if(Conf.RunModel){ double curt = nanotime(); Xmodel->stop(curt); Ymodel->stop(curt); return MCC_E_OK; } if(!SSstop(FALSE)) return MCC_E_FAILED; return MCC_E_OK; } /** * @brief shortcmd - send and receive short binary command * @param cmd (io) - command * @return errcode */ static mcc_errcodes_t shortcmd(short_command_t *cmd){ if(!cmd) return MCC_E_BADFORMAT; if(Conf.RunModel) return MCC_E_FAILED; SSscmd s = {0}; DBG("tag: xmot=%g rad, ymot=%g rad", cmd->Xmot, cmd->Ymot); s.Xmot = X_RAD2MOT(cmd->Xmot); s.Ymot = Y_RAD2MOT(cmd->Ymot); s.Xspeed = X_RS2MOTSPD(cmd->Xspeed); s.Yspeed = Y_RS2MOTSPD(cmd->Yspeed); s.xychange = cmd->xychange; s.XBits = cmd->XBits; s.YBits = cmd->YBits; DBG("X->%d, Y->%d, Xs->%d, Ys->%d", s.Xmot, s.Ymot, s.Xspeed, s.Yspeed); if(!cmdS(&s)) return MCC_E_FAILED; return MCC_E_OK; } /** * @brief longcmd - send and receive long binary command * @param cmd (io) - command * @return errcode */ static mcc_errcodes_t longcmd(long_command_t *cmd){ if(!cmd) return MCC_E_BADFORMAT; if(Conf.RunModel) return MCC_E_FAILED; SSlcmd l = {0}; l.Xmot = X_RAD2MOT(cmd->Xmot); l.Ymot = Y_RAD2MOT(cmd->Ymot); l.Xspeed = X_RS2MOTSPD(cmd->Xspeed); l.Yspeed = Y_RS2MOTSPD(cmd->Yspeed); l.Xadder = X_RS2MOTSPD(cmd->Xadder); l.Yadder = Y_RS2MOTSPD(cmd->Yadder); l.Xatime = S2ADDER(cmd->Xatime); l.Yatime = S2ADDER(cmd->Yatime); if(!cmdL(&l)) return MCC_E_FAILED; return MCC_E_OK; } static mcc_errcodes_t get_hwconf(hardware_configuration_t *hwConfig){ if(!hwConfig) return MCC_E_BADFORMAT; if(Conf.RunModel) return MCC_E_FAILED; SSconfig config; if(!cmdC(&config, FALSE)) return MCC_E_FAILED; // Convert acceleration (ticks per loop^2 to rad/s^2) hwConfig->Xconf.accel = X_MOTACC2RS(config.Xconf.accel); hwConfig->Yconf.accel = Y_MOTACC2RS(config.Yconf.accel); // Convert backlash (ticks to radians) hwConfig->Xconf.backlash = X_MOT2RAD(config.Xconf.backlash); hwConfig->Yconf.backlash = Y_MOT2RAD(config.Yconf.backlash); // Convert error limit (ticks to radians) hwConfig->Xconf.errlimit = X_MOT2RAD(config.Xconf.errlimit); hwConfig->Yconf.errlimit = Y_MOT2RAD(config.Yconf.errlimit); // Proportional, integral, and derivative gains are unitless, so no conversion needed hwConfig->Xconf.propgain = (double)config.Xconf.propgain; hwConfig->Yconf.propgain = (double)config.Yconf.propgain; hwConfig->Xconf.intgain = (double)config.Xconf.intgain; hwConfig->Yconf.intgain = (double)config.Yconf.intgain; hwConfig->Xconf.derivgain = (double)config.Xconf.derivgain; hwConfig->Yconf.derivgain = (double)config.Yconf.derivgain; // Output limit is a percentage (0-100) hwConfig->Xconf.outplimit = (double)config.Xconf.outplimit / 255.0 * 100.0; hwConfig->Yconf.outplimit = (double)config.Yconf.outplimit / 255.0 * 100.0; // Current limit in amps hwConfig->Xconf.currlimit = (double)config.Xconf.currlimit / 100.0; hwConfig->Yconf.currlimit = (double)config.Yconf.currlimit / 100.0; // Integral limit is unitless hwConfig->Xconf.intlimit = (double)config.Xconf.intlimit; hwConfig->Yconf.intlimit = (double)config.Yconf.intlimit; // Copy XBits and YBits (no conversion needed) hwConfig->xbits = config.xbits; hwConfig->ybits = config.ybits; // Copy address hwConfig->address = config.address; // TODO: What to do with eqrate, eqadj and trackgoal? config.latitude = __bswap_16(config.latitude); // Convert latitude (degrees * 100 to radians) hwConfig->latitude = ((double)config.latitude) / 100.0 * M_PI / 180.0; // Copy ticks per revolution hwConfig->Xsetpr = __bswap_32(config.Xsetpr); hwConfig->Ysetpr = __bswap_32(config.Ysetpr); hwConfig->Xmetpr = __bswap_32(config.Xmetpr) / 4; // as documentation said, real ticks are 4 times less hwConfig->Ymetpr = __bswap_32(config.Ymetpr) / 4; // Convert slew rates (ticks per loop to rad/s) hwConfig->Xslewrate = X_MOTSPD2RS(config.Xslewrate); hwConfig->Yslewrate = Y_MOTSPD2RS(config.Yslewrate); // Convert pan rates (ticks per loop to rad/s) hwConfig->Xpanrate = X_MOTSPD2RS(config.Xpanrate); hwConfig->Ypanrate = Y_MOTSPD2RS(config.Ypanrate); // Convert guide rates (ticks per loop to rad/s) hwConfig->Xguiderate = X_MOTSPD2RS(config.Xguiderate); hwConfig->Yguiderate = Y_MOTSPD2RS(config.Yguiderate); // copy baudrate hwConfig->baudrate = (uint32_t) config.baudrate; // Convert local search degrees (degrees * 100 to radians) hwConfig->locsdeg = (double)config.locsdeg / 100.0 * M_PI / 180.0; // Convert local search speed (arcsec per second to rad/s) hwConfig->locsspeed = (double)config.locsspeed * M_PI / (180.0 * 3600.0); // Convert backlash speed (ticks per loop to rad/s) hwConfig->backlspd = X_MOTSPD2RS(config.backlspd); return MCC_E_OK; } static mcc_errcodes_t write_hwconf(hardware_configuration_t *hwConfig){ SSconfig config; if(Conf.RunModel) return MCC_E_FAILED; // Convert acceleration (rad/s^2 to ticks per loop^2) config.Xconf.accel = X_RS2MOTACC(hwConfig->Xconf.accel); config.Yconf.accel = Y_RS2MOTACC(hwConfig->Yconf.accel); // Convert backlash (radians to ticks) config.Xconf.backlash = X_RAD2MOT(hwConfig->Xconf.backlash); config.Yconf.backlash = Y_RAD2MOT(hwConfig->Yconf.backlash); // Convert error limit (radians to ticks) config.Xconf.errlimit = X_RAD2MOT(hwConfig->Xconf.errlimit); config.Yconf.errlimit = Y_RAD2MOT(hwConfig->Yconf.errlimit); // Proportional, integral, and derivative gains are unitless, so no conversion needed config.Xconf.propgain = (uint16_t)hwConfig->Xconf.propgain; config.Yconf.propgain = (uint16_t)hwConfig->Yconf.propgain; config.Xconf.intgain = (uint16_t)hwConfig->Xconf.intgain; config.Yconf.intgain = (uint16_t)hwConfig->Yconf.intgain; config.Xconf.derivgain = (uint16_t)hwConfig->Xconf.derivgain; config.Yconf.derivgain = (uint16_t)hwConfig->Yconf.derivgain; // Output limit is a percentage (0-100), so convert back to 0-255 config.Xconf.outplimit = (uint8_t)(hwConfig->Xconf.outplimit / 100.0 * 255.0); config.Yconf.outplimit = (uint8_t)(hwConfig->Yconf.outplimit / 100.0 * 255.0); // Current limit is in amps (convert back to *100) config.Xconf.currlimit = (uint16_t)(hwConfig->Xconf.currlimit * 100.0); config.Yconf.currlimit = (uint16_t)(hwConfig->Yconf.currlimit * 100.0); // Integral limit is unitless, so no conversion needed config.Xconf.intlimit = (uint16_t)hwConfig->Xconf.intlimit; config.Yconf.intlimit = (uint16_t)hwConfig->Yconf.intlimit; // Copy XBits and YBits (no conversion needed) config.xbits = hwConfig->xbits; config.ybits = hwConfig->ybits; // Convert latitude (radians to degrees * 100) config.latitude = __bswap_16((uint16_t)(hwConfig->latitude * 180.0 / M_PI * 100.0)); // Convert slew rates (rad/s to ticks per loop) config.Xslewrate = X_RS2MOTSPD(hwConfig->Xslewrate); config.Yslewrate = Y_RS2MOTSPD(hwConfig->Yslewrate); // Convert pan rates (rad/s to ticks per loop) config.Xpanrate = X_RS2MOTSPD(hwConfig->Xpanrate); config.Ypanrate = Y_RS2MOTSPD(hwConfig->Ypanrate); // Convert guide rates (rad/s to ticks per loop) config.Xguiderate = X_RS2MOTSPD(hwConfig->Xguiderate); config.Yguiderate = Y_RS2MOTSPD(hwConfig->Yguiderate); // Convert local search degrees (radians to degrees * 100) config.locsdeg = (uint32_t)(hwConfig->locsdeg * 180.0 / M_PI * 100.0); // Convert local search speed (rad/s to arcsec per second) config.locsspeed = (uint32_t)(hwConfig->locsspeed * 180.0 * 3600.0 / M_PI); // Convert backlash speed (rad/s to ticks per loop) config.backlspd = X_RS2MOTSPD(hwConfig->backlspd); config.Xsetpr = __bswap_32(hwConfig->Xsetpr); config.Ysetpr = __bswap_32(hwConfig->Ysetpr); config.Xmetpr = __bswap_32(hwConfig->Xmetpr); config.Ymetpr = __bswap_32(hwConfig->Ymetpr); // TODO - next (void) config; return MCC_E_OK; } // init mount class mount_t Mount = { .init = init, .quit = quit, .getMountData = getMD, .slewTo = slew2, .moveTo = move2, .moveWspeed = move2s, .setSpeed = setspeed, .emergStop = emstop, .stop = stop, .shortCmd = shortcmd, .longCmd = longcmd, .getHWconfig = get_hwconf, .saveHWconfig = write_hwconf, .currentT = nanotime, };