This commit is contained in:
Timur A. Fatkhullin 2025-09-02 16:49:58 +03:00
parent de80acf315
commit fe6492e4fc
11 changed files with 484 additions and 161 deletions

View File

@ -70,7 +70,8 @@ include_directories(${BSPLINES_INCLUDE_DIR})
set(MCC_LIBRARY_SRC1 mcc_generics.h mcc_defaults.h mcc_traits.h mcc_utils.h set(MCC_LIBRARY_SRC1 mcc_generics.h mcc_defaults.h mcc_traits.h mcc_utils.h
mcc_ccte_iers.h mcc_ccte_iers_default.h mcc_ccte_erfa.h mcc_pcm.h mcc_telemetry.h mcc_ccte_iers.h mcc_ccte_iers_default.h mcc_ccte_erfa.h mcc_pcm.h mcc_telemetry.h
mcc_angle.h mcc_pzone.h mcc_pzone_container.h mcc_finite_state_machine.h mcc_angle.h mcc_pzone.h mcc_pzone_container.h mcc_finite_state_machine.h
mcc_generic_mount.h mcc_tracking_model.h) mcc_generic_mount.h mcc_tracking_model.h mcc_slewing_model.h mcc_guiding_model.h
mcc_moving_model_common.h)
list(APPEND MCC_LIBRARY_SRC1 mcc_spdlog.h) list(APPEND MCC_LIBRARY_SRC1 mcc_spdlog.h)

View File

@ -137,6 +137,12 @@ typedef MccGenericTelemetryData<MccCelestialPoint::coord_t> MccTelemetryData;
template <mcc_ccte_c CCTE_T, mcc_hardware_c HARDWARE_T, mcc_PCM_c PCM_T>
struct MccPositionControls : CCTE_T, HARDWARE_T, PCM_T {
virtual ~MccPositionControls() = default;
};
/* JUST CHECK FOR CONCEPT CONSISTENCY */ /* JUST CHECK FOR CONCEPT CONSISTENCY */
static_assert(mcc_julday_c<MccJulianDay>, ""); static_assert(mcc_julday_c<MccJulianDay>, "");

View File

@ -19,6 +19,8 @@
namespace mcc namespace mcc
{ {
static constexpr double mcc_sideral_to_UT1_ratio = 1.002737909350795; // sideral/UT1
// mount construction type (only the most common ones) // mount construction type (only the most common ones)
enum class MccMountType : uint8_t { GERMAN_TYPE, FORK_TYPE, CROSSAXIS_TYPE, ALTAZ_TYPE }; enum class MccMountType : uint8_t { GERMAN_TYPE, FORK_TYPE, CROSSAXIS_TYPE, ALTAZ_TYPE };
@ -879,56 +881,18 @@ concept mcc_guiding_model_c = requires(T t) {
/* GENERIC MOUNT CLASS CONCEPT */ /* GENERIC MOUNT CLASS CONCEPT */
// a class containing mount position related controls
template <typename T>
concept mcc_position_controls_c = mcc_ccte_c<T> && mcc_hardware_c<T> && mcc_PCM_c<T>;
// template <mcc_error_c RetT, typename StopReasonT> // a class containing full set of mount controls
// struct mcc_generic_mount_interface_t { template <typename T>
// virtual ~mcc_generic_mount_interface_t() = default; concept mcc_all_controls_c = mcc_position_controls_c<T> && mcc_telemetry_c<T> && mcc_pzone_container_c<T>;
// // slew mount to target (target coordinates were defined in telemetry data)
// template <std::derived_from<mcc_generic_mount_interface_t> SelfT>
// RetT slewToTarget(this SelfT&& self, mcc_slewing_model_c auto model)
// {
// return std::forward<SelfT>(self).slewToTarget(std::move(model));
// }
// // track target, i.e., the mount moves with celestial speed
// template <std::derived_from<mcc_generic_mount_interface_t> SelfT>
// RetT trackTarget(this SelfT&& self, mcc_tracking_model_c auto model)
// {
// return std::forward<SelfT>(self).trackTarget(std::move(model));
// }
// template <std::derived_from<mcc_generic_mount_interface_t> SelfT>
// RetT startGuidingTarget(this SelfT&& self, mcc_guiding_model_c auto model)
// {
// return std::forward<SelfT>(self).startGuidingTarget(std::move(model));
// }
// template <std::derived_from<mcc_generic_mount_interface_t> SelfT>
// RetT stopGuidingTarget(this SelfT&& self)
// {
// return std::forward<SelfT>(self).stopGuidingTarget();
// }
// template <std::derived_from<mcc_generic_mount_interface_t> SelfT>
// RetT stopMount(this SelfT&& self, StopReasonT reason)
// {
// return std::forward<SelfT>(self).stopMount(std::move(reason));
// }
// protected:
// mcc_generic_mount_interface_t() = default;
// };
// template<typename T>
// concept mcc_generic_mount_c
// = std::derived_from<T, mcc_generic_mount_interface_t<typename T::error_t, typename T::stop_reason_t>>
// && mcc_telemetry_c<T> && mcc_pzone_container_c<T>;
template <typename T> template <typename T>
concept mcc_generic_mount_c = mcc_hardware_c<T> && mcc_telemetry_c<T> && mcc_pzone_container_c<T> && requires(T t) { concept mcc_generic_mount_c = mcc_telemetry_c<T> && mcc_pzone_container_c<T> && requires(T t) {
requires mcc_error_c<typename T::error_t>; requires mcc_error_c<typename T::error_t>;
// slew mount to target (target coordinates were defined in telemetry data) // slew mount to target (target coordinates were defined in telemetry data)

View File

@ -54,74 +54,89 @@ public:
typedef MccSimpleMovingModelParams guiding_params_t; typedef MccSimpleMovingModelParams guiding_params_t;
template <mcc_telemetry_data_c TelemetryT, template <mcc_all_controls_c CONTROLS_T>
mcc_hardware_c HardwareT, MccSimpleGuidingModel(CONTROLS_T* controls)
mcc_PCM_c PcmT,
mcc_pzone_container_c PZoneContT>
MccSimpleGuidingModel(TelemetryT* telemetry, HardwareT* hardware, PcmT* pcm, PZoneContT* pz_cont)
: _stopGuiding(new std::atomic_bool()), _currentParamsMutex(new std::mutex()) : _stopGuiding(new std::atomic_bool()), _currentParamsMutex(new std::mutex())
{ {
_guidingFunc = [telemetry, hardware, pcm, pz_cont, this]() -> error_t { _guidingFunc = [controls, this]() -> error_t {
typename HardwareT::hardware_state_t hw_state; typename CONTROLS_T::hardware_state_t hw_state;
MccTelemetryData tdata; MccTelemetryData tdata;
MccEqtHrzCoords intsc_coords; MccEqtHrzCoords intsc_coords;
double dist; double dist, dx, dy;
auto t_err = telemetry->waitForTelemetryData(&tdata, _currentParams.telemetryTimeout); auto t_err = controls->telemetryData(&tdata);
if (t_err) { if (t_err) {
return mcc_deduce_error<error_t>(t_err, MccSimpleGuidingModelErrorCode::ERROR_GET_TELEMETRY); return mcc_deduce_error<error_t>(t_err, MccSimpleGuidingModelErrorCode::ERROR_GET_TELEMETRY);
} }
// compute intersection points with the prohibited zones bool no_intersects = false;
auto pz_err = mcc_find_closest_pzone(pz_cont, tdata, &intsc_coords);
// function to update the closest prohibited zone intersect point
auto update_pzones_ipoint = [controls, &tdata, &intsc_coords, &no_intersects, &hw_state,
this]() -> error_t {
// compute intersection points with the prohibited zones
auto pz_err = mcc_find_closest_pzone(controls, tdata, &intsc_coords);
if (pz_err) {
return mcc_deduce_error<error_t>(pz_err,
MccSimpleGuidingModelErrorCode::ERROR_PZONE_CONTAINER_COMP);
}
if constexpr (mccIsEquatorialMount(CONTROLS_T::mountType)) {
if (std::isfinite(intsc_coords.HA)) {
intsc_coords.X = intsc_coords.HA;
intsc_coords.Y = intsc_coords.DEC_APP;
} else {
no_intersects = true;
intsc_coords.X = tdata.HA + 710.0_mins; // 12h - 10min
intsc_coords.Y = tdata.DEC_APP;
}
} else if constexpr (mccIsAltAzMount(CONTROLS_T::mountType)) {
if (std::isfinite(intsc_coords.AZ)) {
intsc_coords.X = intsc_coords.AZ;
intsc_coords.Y = intsc_coords.ZD;
} else {
no_intersects = true;
}
} else {
static_assert(false, "UNKNOW MOUNT TYPE!");
}
MccPCMResult pcm_inv_res;
// endpoint of the mount moving
auto pcm_err = controls->computeInversePCM(intsc_coords, &pcm_inv_res, &hw_state);
if (pcm_err) {
return mcc_deduce_error<error_t>(pcm_err, MccSimpleGuidingModelErrorCode::ERROR_PCM_COMP);
}
if constexpr (mccIsEquatorialMount(CONTROLS_T::mountType)) {
hw_state.speedX = _currentParams.trackSpeedX;
hw_state.speedY = _currentParams.trackSpeedY;
}
};
auto pz_err = update_pzones_ipoint();
if (pz_err) { if (pz_err) {
return mcc_deduce_error<error_t>(pz_err, MccSimpleGuidingModelErrorCode::ERROR_PZONE_CONTAINER_COMP); return mcc_deduce_error<error_t>(pz_err, MccSimpleGuidingModelErrorCode::ERROR_PZONE_CONTAINER_COMP);
} }
bool no_intersects = false; hw_state.moving_type = CONTROLS_T::hardware_moving_state_t::HW_MOVE_GUIDING;
auto hw_err = controls->hardwareSetState(hw_state);
if constexpr (mccIsEquatorialMount(HardwareT::mountType)) {
if (std::isfinite(intsc_coords.HA)) {
intsc_coords.X = intsc_coords.HA;
intsc_coords.Y = intsc_coords.DEC_APP;
} else {
no_intersects = true;
intsc_coords.X = tdata.HA + 710.0_mins; // 12h - 10min
intsc_coords.Y = tdata.DEC_APP;
}
} else if constexpr (mccIsAltAzMount(HardwareT::mountType)) {
if (std::isfinite(intsc_coords.AZ)) {
intsc_coords.X = intsc_coords.AZ;
intsc_coords.Y = intsc_coords.ZD;
} else {
no_intersects = true;
}
} else {
static_assert(false, "UNKNOW MOUNT TYPE!");
}
// compute position in future
auto hw_err = hardware->hardwareGetState(&hw_state);
if (hw_err) { if (hw_err) {
return mcc_deduce_error<error_t>(hw_err, MccSimpleGuidingModelErrorCode::ERROR_HW_GETSTATE); return mcc_deduce_error<error_t>(hw_err, MccSimpleGuidingModelErrorCode::ERROR_HW_SETSTATE);
} }
MccPCMResult pcm_inv_res;
// endpoint of the mount moving std::chrono::steady_clock::time_point last_corr_tp;
auto pcm_err = pcm->computeInversePCM(intsc_coords, &pcm_inv_res, &hw_state);
if (pcm_err) {
return mcc_deduce_error<error_t>(pcm_err, MccSimpleGuidingModelErrorCode::ERROR_PCM_COMP);
}
while (*_stopGuiding) { while (*_stopGuiding) {
// wait for updated telemetry data // wait for updated telemetry data
{ {
std::lock_guard lock{*_currentParamsMutex}; std::lock_guard lock{*_currentParamsMutex};
t_err = telemetry->waitForTelemetryData(&tdata, _currentParams.telemetryTimeout); t_err = controls->waitForTelemetryData(&tdata, _currentParams.telemetryTimeout);
if (t_err) { if (t_err) {
return mcc_deduce_error<error_t>(t_err, MccSimpleGuidingModelErrorCode::ERROR_GET_TELEMETRY); return mcc_deduce_error<error_t>(t_err, MccSimpleGuidingModelErrorCode::ERROR_GET_TELEMETRY);
@ -133,7 +148,7 @@ public:
} }
// control prohibited zones // control prohibited zones
if (mcc_is_near_pzones(pz_cont, tdata, _currentParams.minTimeToPZone, pz_err)) { if (mcc_is_near_pzones(controls, tdata, _currentParams.minTimeToPZone, pz_err)) {
return MccSimpleGuidingModelErrorCode::ERROR_NEAR_PZONE; return MccSimpleGuidingModelErrorCode::ERROR_NEAR_PZONE;
} }
if (pz_err) { if (pz_err) {
@ -141,10 +156,74 @@ public:
MccSimpleGuidingModelErrorCode::ERROR_PZONE_CONTAINER_COMP); MccSimpleGuidingModelErrorCode::ERROR_PZONE_CONTAINER_COMP);
} }
t_err = telemetry->targetToMountDist(&dist); if (*_stopGuiding) {
break;
}
t_err = controls->targetToMountDist(&dist);
if (t_err) { if (t_err) {
return mcc_deduce_error<error_t>(t_err, MccSimpleGuidingModelErrorCode::ERROR_DIST_TELEMETRY); return mcc_deduce_error<error_t>(t_err, MccSimpleGuidingModelErrorCode::ERROR_DIST_TELEMETRY);
} }
if (*_stopGuiding) {
break;
}
{
std::lock_guard lock{*_currentParamsMutex};
if (dist < _currentParams.guidingCorrectionRange[0] ||
dist > _currentParams.guidingCorrectionRange[1]) { // moving with sideral speed
hw_state.moving_type = CONTROLS_T::hardware_moving_state_t::HW_MOVE_TRACKING;
if constexpr (mccIsEquatorialMount(CONTROLS_T::mountType)) {
hw_state.speedX = _currentParams.trackSpeedX;
hw_state.speedY = _currentParams.trackSpeedY;
} else if constexpr (mccIsAltAzMount(CONTROLS_T::mountType)) {
static_assert(false, "NOT IMPLEMENTED!");
} else {
static_assert(false, "UNKNOW MOUNT TYPE!");
}
hw_err = controls->hardwareSetState(hw_state);
if (hw_err) {
return mcc_deduce_error<error_t>(hw_err, MccSimpleGuidingModelErrorCode::ERROR_HW_SETSTATE);
}
continue;
}
auto now = std::chrono::steady_clock::now();
if ((now - last_corr_tp) < _currentParams.guidingMinInterval) {
continue;
}
hw_state.X = tdata.target.X;
if constexpr (mccIsEquatorialMount(CONTROLS_T::mountType)) {
if (_currentParams.dualAxisGuiding) {
hw_state.Y = tdata.target.Y;
} else { // only along HA-axis
hw_state.Y = tdata.Y;
}
} else if constexpr (mccIsAltAzMount(CONTROLS_T::mountType)) {
hw_state.Y = tdata.target.Y;
} else {
static_assert(false, "UNKNOW MOUNT TYPE!");
}
if (t_err) {
return mcc_deduce_error<error_t>(t_err, MccSimpleGuidingModelErrorCode::ERROR_DIFF_TELEMETRY);
}
last_corr_tp = now;
}
// send corrections
hw_state.moving_type = CONTROLS_T::hardware_moving_state_t::HW_MOVE_GUIDING;
hw_err = controls->hardwareSetState(hw_state);
if (hw_err) {
return mcc_deduce_error<error_t>(hw_err, MccSimpleGuidingModelErrorCode::ERROR_HW_SETSTATE);
}
} }
return MccSimpleGuidingModelErrorCode::ERROR_OK; return MccSimpleGuidingModelErrorCode::ERROR_OK;

View File

@ -0,0 +1,253 @@
#pragma once
/* MOUNT CONTROL COMPONENTS LIBRARY */
/* SIMPLE GUIDING MODEL IMPLEMENTATION */
#include "mcc_defaults.h"
#include "mcc_moving_model_common.h"
namespace mcc
{
enum class MccSimpleGuidingModelErrorCode : int {
ERROR_OK,
ERROR_HW_GETSTATE,
ERROR_HW_SETSTATE,
ERROR_PCM_COMP,
ERROR_GET_TELEMETRY,
ERROR_DIST_TELEMETRY,
ERROR_DIFF_TELEMETRY,
ERROR_PZONE_CONTAINER_COMP,
ERROR_IN_PZONE,
ERROR_NEAR_PZONE,
ERROR_TIMEOUT,
ERROR_UNEXPECTED_AXIS_RATES,
ERROR_STOPPED
};
} // namespace mcc
namespace std
{
template <>
class is_error_code_enum<mcc::MccSimpleGuidingModelErrorCode> : public true_type
{
};
} // namespace std
namespace mcc
{
class MccSimpleGuidingModel
{
public:
typedef std::error_code error_t;
typedef MccSimpleMovingModelParams guiding_params_t;
template <mcc_telemetry_data_c TelemetryT,
mcc_hardware_c HardwareT,
mcc_PCM_c PcmT,
mcc_pzone_container_c PZoneContT>
MccSimpleGuidingModel(TelemetryT* telemetry, HardwareT* hardware, PcmT* pcm, PZoneContT* pz_cont)
: _stopGuiding(new std::atomic_bool()), _currentParamsMutex(new std::mutex())
{
_guidingFunc = [telemetry, hardware, pcm, pz_cont, this]() -> error_t {
typename HardwareT::hardware_state_t hw_state;
MccTelemetryData tdata;
MccEqtHrzCoords intsc_coords;
double dist, dx, dy;
auto t_err = telemetry->waitForTelemetryData(&tdata, _currentParams.telemetryTimeout);
if (t_err) {
return mcc_deduce_error<error_t>(t_err, MccSimpleGuidingModelErrorCode::ERROR_GET_TELEMETRY);
}
// compute intersection points with the prohibited zones
auto pz_err = mcc_find_closest_pzone(pz_cont, tdata, &intsc_coords);
if (pz_err) {
return mcc_deduce_error<error_t>(pz_err, MccSimpleGuidingModelErrorCode::ERROR_PZONE_CONTAINER_COMP);
}
bool no_intersects = false;
if constexpr (mccIsEquatorialMount(HardwareT::mountType)) {
if (std::isfinite(intsc_coords.HA)) {
intsc_coords.X = intsc_coords.HA;
intsc_coords.Y = intsc_coords.DEC_APP;
} else {
no_intersects = true;
intsc_coords.X = tdata.HA + 710.0_mins; // 12h - 10min
intsc_coords.Y = tdata.DEC_APP;
}
} else if constexpr (mccIsAltAzMount(HardwareT::mountType)) {
if (std::isfinite(intsc_coords.AZ)) {
intsc_coords.X = intsc_coords.AZ;
intsc_coords.Y = intsc_coords.ZD;
} else {
no_intersects = true;
}
} else {
static_assert(false, "UNKNOW MOUNT TYPE!");
}
// compute position in future
auto hw_err = hardware->hardwareGetState(&hw_state);
if (hw_err) {
return mcc_deduce_error<error_t>(hw_err, MccSimpleGuidingModelErrorCode::ERROR_HW_GETSTATE);
}
MccPCMResult pcm_inv_res;
// endpoint of the mount moving
auto pcm_err = pcm->computeInversePCM(intsc_coords, &pcm_inv_res, &hw_state);
if (pcm_err) {
return mcc_deduce_error<error_t>(pcm_err, MccSimpleGuidingModelErrorCode::ERROR_PCM_COMP);
}
if constexpr (mccIsEquatorialMount(HardwareT::mountType)) {
hw_state.speedX = _currentParams.trackSpeedX;
hw_state.speedY = _currentParams.trackSpeedY;
}
std::chrono::steady_clock::time_point last_corr_tp;
while (*_stopGuiding) {
// wait for updated telemetry data
{
std::lock_guard lock{*_currentParamsMutex};
t_err = telemetry->waitForTelemetryData(&tdata, _currentParams.telemetryTimeout);
if (t_err) {
return mcc_deduce_error<error_t>(t_err, MccSimpleGuidingModelErrorCode::ERROR_GET_TELEMETRY);
}
}
if (*_stopGuiding) {
break;
}
// control prohibited zones
if (mcc_is_near_pzones(pz_cont, tdata, _currentParams.minTimeToPZone, pz_err)) {
return MccSimpleGuidingModelErrorCode::ERROR_NEAR_PZONE;
}
if (pz_err) {
return mcc_deduce_error<error_t>(pz_err,
MccSimpleGuidingModelErrorCode::ERROR_PZONE_CONTAINER_COMP);
}
if (*_stopGuiding) {
break;
}
t_err = telemetry->targetToMountDist(&dist);
if (t_err) {
return mcc_deduce_error<error_t>(t_err, MccSimpleGuidingModelErrorCode::ERROR_DIST_TELEMETRY);
}
if (*_stopGuiding) {
break;
}
{
std::lock_guard lock{*_currentParamsMutex};
if (dist < _currentParams.guidingCorrectionRange[0] ||
dist > _currentParams.guidingCorrectionRange[1]) { // moving with sideral speed
hw_state.moving_type = HardwareT::hardware_moving_state_t::HW_MOVE_TRACKING;
if constexpr (mccIsEquatorialMount(HardwareT::mountType)) {
hw_state.speedX = _currentParams.trackSpeedX;
hw_state.speedY = _currentParams.trackSpeedY;
} else if constexpr (mccIsAltAzMount(HardwareT::mountType)) {
static_assert(false, "NOT IMPLEMENTED!");
} else {
static_assert(false, "UNKNOW MOUNT TYPE!");
}
hw_err = hardware->hardwareSetState(hw_state);
if (hw_err) {
return mcc_deduce_error<error_t>(hw_err, MccSimpleGuidingModelErrorCode::ERROR_HW_SETSTATE);
}
continue;
}
auto now = std::chrono::steady_clock::now();
if ((now - last_corr_tp) < _currentParams.guidingMinInterval) {
continue;
}
hw_state.X = tdata.target.X;
if constexpr (mccIsEquatorialMount(HardwareT::mountType)) {
if (_currentParams.dualAxisGuiding) {
hw_state.Y = tdata.target.Y;
} else { // only along HA-axis
hw_state.Y = tdata.Y;
}
} else if constexpr (mccIsAltAzMount(HardwareT::mountType)) {
hw_state.Y = tdata.target.Y;
} else {
static_assert(false, "UNKNOW MOUNT TYPE!");
}
if (t_err) {
return mcc_deduce_error<error_t>(t_err, MccSimpleGuidingModelErrorCode::ERROR_DIFF_TELEMETRY);
}
last_corr_tp = now;
}
// send corrections
hw_state.moving_type = HardwareT::hardware_moving_state_t::HW_MOVE_GUIDING;
hw_err = hardware->hardwareSetState(hw_state);
if (hw_err) {
return mcc_deduce_error<error_t>(hw_err, MccSimpleGuidingModelErrorCode::ERROR_HW_SETSTATE);
}
}
return MccSimpleGuidingModelErrorCode::ERROR_OK;
};
}
MccSimpleGuidingModel(MccSimpleGuidingModel&&) = default;
MccSimpleGuidingModel& operator=(MccSimpleGuidingModel&&) = default;
MccSimpleGuidingModel(const MccSimpleGuidingModel&) = delete;
MccSimpleGuidingModel& operator=(const MccSimpleGuidingModel&) = delete;
error_t startGuidingTarget()
{
*_stopGuiding = false;
return _guidingFunc();
}
error_t stoptGuidingTarget()
{
*_stopGuiding = true;
return MccSimpleGuidingModelErrorCode::ERROR_OK;
}
protected:
std::function<error_t()> _guidingFunc{};
std::unique_ptr<std::atomic_bool> _stopGuiding;
guiding_params_t _currentParams{};
std::unique_ptr<std::mutex> _currentParamsMutex{};
};
} // namespace mcc

View File

@ -9,6 +9,7 @@
#include <chrono> #include <chrono>
#include "mcc_angle.h" #include "mcc_angle.h"
#include "mcc_defaults.h"
#include "mcc_generics.h" #include "mcc_generics.h"
namespace mcc namespace mcc
@ -26,6 +27,9 @@ struct MccSimpleMovingModelParams {
// minimal time to prohibited zone (at current speed in slewing mode). if it is lesser then exit with error // minimal time to prohibited zone (at current speed in slewing mode). if it is lesser then exit with error
std::chrono::seconds minTimeToPZone{10}; std::chrono::seconds minTimeToPZone{10};
// time interval to update prohibited zones related quantities (e.g. intersection points)
std::chrono::milliseconds updatingPZoneInterval{5000};
// ******* slewing mode ******* // ******* slewing mode *******
@ -57,7 +61,8 @@ struct MccSimpleMovingModelParams {
// ******* guiding mode ******* // ******* guiding mode *******
double correctionRange[2]{0.3_arcsecs, 3.0_arcsecs}; double guidingCorrectionRange[2]{0.3_arcsecs, 3.0_arcsecs};
std::chrono::milliseconds guidingMinInterval{500}; // minimum time between two successive corrections
bool dualAxisGuiding{true}; // mount must be of an equatorial type: false means guiding along only HA-axis bool dualAxisGuiding{true}; // mount must be of an equatorial type: false means guiding along only HA-axis
}; };
@ -112,7 +117,7 @@ typename PZoneContT::error_t mcc_find_closest_pzone(PZoneContT* pz_cont,
closest_coords->ZD = std::numeric_limits<double>::quiet_NaN(); closest_coords->ZD = std::numeric_limits<double>::quiet_NaN();
closest_coords->ALT = std::numeric_limits<double>::quiet_NaN(); closest_coords->ALT = std::numeric_limits<double>::quiet_NaN();
std::vector<res_t> pz_coords(c, pz_cont->sizePZones()); std::vector<res_t> pz_coords(pz_cont->sizePZones(), c);
double dha, dha_min = std::numeric_limits<double>::max(); double dha, dha_min = std::numeric_limits<double>::max();
@ -136,5 +141,22 @@ typename PZoneContT::error_t mcc_find_closest_pzone(PZoneContT* pz_cont,
return err; return err;
} }
auto mcc_compute_target_point(mcc_ccte_c auto const& ccte,
mcc_telemetry_c auto const& tdata,
traits::mcc_time_duration_c auto const& time_dist,
mcc_celestial_point_c auto* point)
{
auto dt = std::chrono::duration<double>{tdata.HA} + time_dist * mcc_sideral_to_UT1_ratio; // hour seconds
// point in +time_dist future
MccCelestialPoint pt{.pair_kind = point->pair_kind,
.time_point = point->time_point + time_dist,
.X = dt.count() * std::numbers::pi / 3600.0 / 15.0,
.Y = tdata.DEC_APP};
point->time_point = pt.time_point;
return ccte.transformCoordinates(std::move(pt), point);
}
} // namespace mcc } // namespace mcc

View File

@ -14,7 +14,12 @@
namespace mcc namespace mcc
{ {
enum class MccDefaultPCMErrorCode : int { ERROR_OK, ERROR_INVALID_INPUTS_BISPLEV, ERROR_EXCEED_MAX_ITERS }; enum class MccDefaultPCMErrorCode : int {
ERROR_OK,
ERROR_INVALID_INPUTS_BISPLEV,
ERROR_EXCEED_MAX_ITERS,
ERROR_NULLPTR
};
/* error category definition */ /* error category definition */
@ -38,6 +43,8 @@ struct MccDefaultPCMCategory : public std::error_category {
return "invalid input arguments for bispev"; return "invalid input arguments for bispev";
case MccDefaultPCMErrorCode::ERROR_EXCEED_MAX_ITERS: case MccDefaultPCMErrorCode::ERROR_EXCEED_MAX_ITERS:
return "exceed maximum of iterations number"; return "exceed maximum of iterations number";
case MccDefaultPCMErrorCode::ERROR_NULLPTR:
return "nullptr input argument";
default: default:
return "UNKNOWN"; return "UNKNOWN";
} }
@ -183,10 +190,18 @@ public:
error_t computePCM(mcc_celestial_point_c auto pt, mcc_PCM_c auto* res, T* app_pt = nullptr) error_t computePCM(mcc_celestial_point_c auto pt, mcc_PCM_c auto* res, T* app_pt = nullptr)
requires(mcc_celestial_point_c<T> || mcc_eqt_hrz_coord_c<T> || std::same_as<T, std::nullptr_t>) requires(mcc_celestial_point_c<T> || mcc_eqt_hrz_coord_c<T> || std::same_as<T, std::nullptr_t>)
{ {
if (res == nullptr) {
return MccDefaultPCMErrorCode::ERROR_NULLPTR;
}
std::lock_guard lock(*_pcmDataMutex); std::lock_guard lock(*_pcmDataMutex);
res->pcmX = 0.0;
res->pcmY = 0.0;
if constexpr (mcc_is_equatorial_mount<MOUNT_TYPE>) { // equatorial if constexpr (mcc_is_equatorial_mount<MOUNT_TYPE>) { // equatorial
if (_pcmData.type == MccDefaultPCMType::PCM_TYPE_GEOMETRY) { if (_pcmData.type == MccDefaultPCMType::PCM_TYPE_GEOMETRY ||
_pcmData.type == MccDefaultPCMType::PCM_TYPE_GEOMETRY_BSPLINE) {
const auto cosPhi = std::cos(_pcmData.siteLatitude); const auto cosPhi = std::cos(_pcmData.siteLatitude);
const auto sinPhi = std::sin(_pcmData.siteLatitude); const auto sinPhi = std::sin(_pcmData.siteLatitude);
const auto tanY = std::tan(pt.Y); const auto tanY = std::tan(pt.Y);

View File

@ -11,8 +11,6 @@
namespace mcc namespace mcc
{ {
static constexpr double mcc_sideral_to_UT1_ratio = 1.002737909350795; // sideral/UT1
enum MccAltLimitPZErrorCode : int { ERROR_OK, ERROR_NULLPTR, ERROR_COORD_TRANSFROM }; enum MccAltLimitPZErrorCode : int { ERROR_OK, ERROR_NULLPTR, ERROR_COORD_TRANSFROM };

View File

@ -164,7 +164,7 @@ public:
return mcc_deduce_error<error_t>(hw_err, MccSimpleSlewingModelErrorCode::ERROR_HW_SETSTATE); return mcc_deduce_error<error_t>(hw_err, MccSimpleSlewingModelErrorCode::ERROR_HW_SETSTATE);
} }
std::chrono::system_clock::time_point start_slewing_tp, last_adjust_tp; std::chrono::steady_clock::time_point start_slewing_tp, last_adjust_tp;
mcc_tp2tp(hw_state.time_point, start_slewing_tp); mcc_tp2tp(hw_state.time_point, start_slewing_tp);
double dist, dx, dy, sinY, rate2, xrate; double dist, dx, dy, sinY, rate2, xrate;
@ -230,7 +230,7 @@ public:
{ {
std::lock_guard lock{*_currentParamsMutex}; std::lock_guard lock{*_currentParamsMutex};
if ((std::chrono::system_clock::now() - start_slewing_tp) > _currentParams.slewTimeout) { if ((std::chrono::steady_clock::now() - start_slewing_tp) > _currentParams.slewTimeout) {
return MccSimpleSlewingModelErrorCode::ERROR_TIMEOUT; return MccSimpleSlewingModelErrorCode::ERROR_TIMEOUT;
} }
} }
@ -284,7 +284,8 @@ public:
} }
if (dist <= _currentParams.adjustCoordDiff) { // adjust mount pointing if (dist <= _currentParams.adjustCoordDiff) { // adjust mount pointing
if ((std::chrono::system_clock::now() - last_adjust_tp) < _currentParams.adjustCycleInterval) { auto now = std::chrono::steady_clock::now();
if ((now - last_adjust_tp) < _currentParams.adjustCycleInterval) {
continue; continue;
} }
@ -301,7 +302,7 @@ public:
return mcc_deduce_error<error_t>(hw_err, MccSimpleSlewingModelErrorCode::ERROR_HW_SETSTATE); return mcc_deduce_error<error_t>(hw_err, MccSimpleSlewingModelErrorCode::ERROR_HW_SETSTATE);
} }
last_adjust_tp = std::chrono::system_clock::now(); last_adjust_tp = now;
adjust_mode = true; adjust_mode = true;

View File

@ -16,9 +16,6 @@
namespace mcc namespace mcc
{ {
static constexpr double mcc_sideral_to_UT1_ratio = 1.002737909350795; // sideral/UT1
enum MccTelemetryErrorCode : int { enum MccTelemetryErrorCode : int {
ERROR_OK, ERROR_OK,
ERROR_NULLPTR, ERROR_NULLPTR,

View File

@ -80,18 +80,9 @@ public:
} }
_trackingFunc = [telemetry, hardware, pcm, pz_cont, this]() -> error_t { _trackingFunc = [telemetry, hardware, pcm, pz_cont, this]() -> error_t {
MccCelestialPoint cpt;
typename HardwareT::hardware_state_t hw_state; typename HardwareT::hardware_state_t hw_state;
if constexpr (mccIsEquatorialMount(PcmT::mountType)) { MccEqtHrzCoords intsc_coords;
cpt.pair_kind = MccCoordPairKind::COORDS_KIND_HADEC_APP;
} else if constexpr (mccIsAltAzMount(PcmT::mountType)) {
cpt.pair_kind = MccCoordPairKind::COORDS_KIND_AZALT;
static_assert(false, "NOT IMPLEMENTED!");
} else {
static_assert(false, "UNKNOW MOUNT TYPE!");
}
MccTelemetryData tdata; MccTelemetryData tdata;
auto t_err = telemetry->waitForTelemetryData(&tdata, _currentTrackParams.telemetryTimeout); auto t_err = telemetry->waitForTelemetryData(&tdata, _currentTrackParams.telemetryTimeout);
@ -99,63 +90,59 @@ public:
return mcc_deduce_error<error_t>(t_err, MccSimpleTrackingModelErrorCode::ERROR_GET_TELEMETRY); return mcc_deduce_error<error_t>(t_err, MccSimpleTrackingModelErrorCode::ERROR_GET_TELEMETRY);
} }
mcc_tp2tp(tdata.time_point, cpt.time_point); mcc_tp2tp(tdata.time_point, intsc_coords.time_point);
bool no_intersects = false;
std::vector<std::chrono::duration<double>> pz_timeto; // in seconds std::vector<std::chrono::duration<double>> pz_timeto; // in seconds
std::chrono::duration<double> min_time{0.0}; std::chrono::duration<double> min_time{0.0};
std::vector<MccCelestialPoint> intsc_pt(pz_cont->sizePZones(), cpt);
// compute intersection points with the prohibited zones // compute intersection points with the prohibited zones
auto pz_err = pz_cont->intersectPZone(tdata, &intsc_pt); auto pz_err = mcc_find_closest_pzone(pz_cont, tdata, &intsc_coords);
if (pz_err) { if (pz_err) {
return mcc_deduce_error<error_t>(pz_err, MccSimpleTrackingModelErrorCode::ERROR_PZONE_CONTAINER_COMP); return mcc_deduce_error<error_t>(pz_err, MccSimpleTrackingModelErrorCode::ERROR_PZONE_CONTAINER_COMP);
} }
bool no_intersects = false;
if constexpr (mccIsEquatorialMount(HardwareT::mountType)) {
if (std::isfinite(intsc_coords.HA)) {
intsc_coords.X = intsc_coords.HA;
intsc_coords.Y = intsc_coords.DEC_APP;
} else {
no_intersects = true;
intsc_coords.X = tdata.HA + 710.0_mins; // 12h - 10min
intsc_coords.Y = tdata.DEC_APP;
}
} else if constexpr (mccIsAltAzMount(HardwareT::mountType)) {
if (std::isfinite(intsc_coords.AZ)) {
intsc_coords.X = intsc_coords.AZ;
intsc_coords.Y = intsc_coords.ZD;
} else {
no_intersects = true;
}
} else {
static_assert(false, "UNKNOW MOUNT TYPE!");
}
// compute position in future
auto hw_err = hardware->hardwareGetState(&hw_state);
if (hw_err) {
return mcc_deduce_error<error_t>(hw_err, MccSimpleTrackingModelErrorCode::ERROR_HW_GETSTATE);
}
MccPCMResult pcm_inv_res;
// endpoint of the mount moving
auto pcm_err = pcm->computeInversePCM(intsc_coords, &pcm_inv_res, &hw_state);
if (pcm_err) {
return mcc_deduce_error<error_t>(pcm_err, MccSimpleTrackingModelErrorCode::ERROR_PCM_COMP);
}
if constexpr (mccIsEquatorialMount(PcmT::mountType)) { if constexpr (mccIsEquatorialMount(PcmT::mountType)) {
double dha_min = std::numbers::pi * 2.0, dha;
// find the closest pzone
for (auto& ipt : intsc_pt) {
if (std::isfinite(ipt.X) && std::isfinite(ipt.Y)) {
dha = ipt.X - tdata.HA;
if (dha < 0.0) {
dha += std::numbers::pi * 2.0;
}
if (dha < dha_min) {
dha_min = dha;
cpt.X = ipt.X;
cpt.Y = ipt.Y;
}
}
}
if (utils::isEqual(dha_min, std::numbers::pi * 2.0)) { // no intersections
no_intersects = true;
cpt.X = tdata.HA + 710.0_mins; // 12h - 10min
cpt.Y = tdata.DEC_APP;
}
// compute position in future
auto hw_err = hardware->hardwareGetState(&hw_state);
if (hw_err) {
return mcc_deduce_error<error_t>(hw_err, MccSimpleTrackingModelErrorCode::ERROR_HW_GETSTATE);
}
MccPCMResult pcm_inv_res;
// endpoint of the mount moving
auto pcm_err = pcm->computeInversePCM(cpt, &pcm_inv_res, &hw_state);
if (pcm_err) {
return mcc_deduce_error<error_t>(pcm_err, MccSimpleTrackingModelErrorCode::ERROR_PCM_COMP);
}
// just set sideral rate once // just set sideral rate once
mcc_tp2tp(cpt.time_point, hw_state.time_point); mcc_tp2tp(tdata.time_point, hw_state.time_point);
{ {
std::lock_guard lock{*_currentTrackParamsMutex}; std::lock_guard lock{*_currentTrackParamsMutex};
@ -199,8 +186,8 @@ public:
} }
if (no_intersects) { if (no_intersects) {
if ((cpt.X - tdata.HA) < 10.0_mins) { // recompute target point if ((intsc_coords.HA - tdata.HA) < 10.0_mins) { // recompute target point
cpt.X += 11.0_hours; intsc_coords.X += 11.0_hours;
hw_err = hardware->hardwareGetState(&hw_state); hw_err = hardware->hardwareGetState(&hw_state);
if (hw_err) { if (hw_err) {
@ -208,7 +195,7 @@ public:
MccSimpleTrackingModelErrorCode::ERROR_HW_GETSTATE); MccSimpleTrackingModelErrorCode::ERROR_HW_GETSTATE);
} }
pcm_err = pcm->computeInversePCM(cpt, &pcm_inv_res, &hw_state); pcm_err = pcm->computeInversePCM(intsc_coords, &pcm_inv_res, &hw_state);
if (pcm_err) { if (pcm_err) {
return mcc_deduce_error<error_t>(pcm_err, return mcc_deduce_error<error_t>(pcm_err,
MccSimpleTrackingModelErrorCode::ERROR_PCM_COMP); MccSimpleTrackingModelErrorCode::ERROR_PCM_COMP);