cleanups of commented code

This commit is contained in:
Timur A. Fatkhullin 2025-10-29 16:15:58 +03:00
parent bc300bb3de
commit 6a72ead855
7 changed files with 12 additions and 1094 deletions

View File

@ -11,7 +11,6 @@
#include <mcc_pzone_container.h> #include <mcc_pzone_container.h>
#include <mcc_spdlog.h> #include <mcc_spdlog.h>
#include "asibfm700_servocontroller.h"
#include "mcc_ccte_erfa.h" #include "mcc_ccte_erfa.h"
namespace asibfm700 namespace asibfm700
@ -25,91 +24,4 @@ typedef mcc::MccPZoneContainer<mcc::MccTimeDuration> Asibfm700PZoneContainer;
typedef mcc::utils::MccSpdlogLogger Asibfm700Logger; typedef mcc::utils::MccSpdlogLogger Asibfm700Logger;
/* MOUNT CONFIGURATION CLASS */
struct Asibfm700MountConfig1 {
std::chrono::milliseconds hardwarePollingPeriod{100}; // main cycle period
// CCTE-related configuration
mcc::MccAngle siteLatitude{43.646711_degs}; // in radians
mcc::MccAngle siteLongitude{41.440732_degs}; // in radians
double siteElevation{2070.0}; // in meters
double refractWavelength{0.55}; // in mkm
std::string leapSecondFilename{""}; // an empty filename means default precompiled string
std::string bulletinAFilename{""}; // an empty filename means default precompiled string
// PCM-related configuration (no B-spline term, all coefficients are zero)
Asibfm700PCM::pcm_data_t pcmData{.type = mcc::MccDefaultPCMType::PCM_TYPE_GEOMETRY,
.siteLatitude = siteLatitude,
.geomCoefficients = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}};
// servo controller configuration
AsibFM700ServoController::hardware_config_t servoControllerConfig{};
// slew and track parameters
mcc::MccSimpleMovingModelParams movingModelParams{};
// prohibited zones parameters
mcc::MccAngle pzMinAltitude{10.0_degs}; // in radians
mcc::MccAngle pzLimitSwitchHAMin{}; // in radians
mcc::MccAngle pzLimitSwitchHAMax{}; // in radians
};
/* MOUNT CONFIGURATION FILE DEFAULTS */
struct Asibfm700MountConfigFileDefailts {
std::string hardwarePollingPeriod{"100"}; // main cycle period in millisecs
std::string siteLatitude{"43.646711"}; // site latitude in degrees or sexagesimal format
std::string siteLongitude{"41.440732"}; // site longitude in degrees or sexagesimal format
std::string siteElevation{"2070.0"}; // site elevation in meters
std::string refractWavelength{"0.55"}; // wavelength at which refraction is calculated (in mkm)
std::string leapSecondFilename{""}; // an empty filename means default precompiled string
std::string bulletinAFilename{""}; // an empty filename means default precompiled string
// pointing correction model
std::string pcmType{"GEOMETRY"};
std::vector<std::string> pcmGeomCoeffs{"0.0", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0", "0.0"};
std::vector<std::string> pcmBsplineDegree{"3", "3"};
// [0, 360]
std::vector<std::string> pcmBsplineXknots{"0.0", "0.6981317", "1.3962634", "2.0943951", "2.7925268",
"3.4906585", "4.1887902", "4.88692191", "5.58505361", "6.28318531"};
// [-30, 90]
std::vector<std::string> pcmBsplineYknots{"-0.52359878", "-0.29088821", "-0.05817764", "0.17453293", "0.40724349",
"0.63995406", "0.87266463", "1.10537519", "1.33808576", "1.57079633"};
std::vector<std::string> pcmBsplineXcoeffs{};
std::vector<std::string> pcmBsplineYcoeffs{};
// slewing and tracking parameters
std::string sideralRate{"15.0410686"}; // arcseconds per second
std::string telemetryTimeout{"3"}; // timeout for telemetry updating in seconds
std::string minTimeToPZone{"10"}; // minimal time in seconds to prohibited zone
// a time interval to update prohibited zones related quantities
std::string updatingPZoneInterval{"5000"}; // in millisecs
std::string slewToleranceRadius{"5.0"}; // coordinates difference in arcsecs to stop slewing
std::string adjustCoordDiff{"50.0"}; // target-mount coordinate difference in arcsecs to start adjusting of slewing
std::string adjustCycleInterval{"300"}; // minimum time in millisecs between two successive adjustments
std::string slewTimeout{"3600"}; // slew process timeout
// a time shift into future to compute target position in future (UT1-scale time duration)
std::string timeShiftToTargetPoint{"10000"}; // in millisecs
std::string trackingCycleInterval{"300"}; // minimum time in millisecs between two successive tracking corrections
// prohibited zones
std::string pzMinAltitude{"10.0"}; // minimal altitude in degrees
std::string pzLimitSwitchHAMin{""}; // HA-axis limit switch minimal value
std::string pzLimitSwitchHAMax{""}; // HA-axis limit switch maximal value
// hardware
std::string hwMaxRateHA{""}; // maximal moving rate along HA-axis (Y-axis of Sidereal servo microcontroller)
std::string hwMaxRateDEC{""}; // maximal moving rate along DEC-axis (X-axis of Sidereal servo microcontroller)
};
} // namespace asibfm700 } // namespace asibfm700

View File

@ -5,7 +5,6 @@
#include <expected> #include <expected>
#include <filesystem> #include <filesystem>
#include <fstream> #include <fstream>
#include <unordered_map>
#include <mcc_angle.h> #include <mcc_angle.h>
#include <mcc_moving_model_common.h> #include <mcc_moving_model_common.h>
@ -24,282 +23,15 @@ namespace asibfm700
// to follow std::variant requirements (not references, not array, not void) // to follow std::variant requirements (not references, not array, not void)
template <typename T> template <typename T>
concept variant_valid_type_c = requires { !std::is_array_v<T> && !std::is_void_v<T> && !std::is_reference_v<T>; }; concept config_record_valid_type_c = requires { !std::is_array_v<T> && !std::is_void_v<T> && !std::is_reference_v<T>; };
// configuration record
template <typename T>
concept config_record_c = requires(T t) {
requires std::same_as<decltype(t.key), std::string_view>; // keyword
requires variant_valid_type_c<decltype(t.value)>; // value
};
// simple minimal-requirement configuration record class // simple minimal-requirement configuration record class
template <variant_valid_type_c T> template <config_record_valid_type_c T>
struct simple_config_record_t { struct simple_config_record_t {
std::string_view key; std::string_view key;
T value; T value;
}; };
// description of config (a std::tuple of "config_record_c"s)
template <typename T>
concept config_desc_c = requires(T t) { []<config_record_c... Ts>(std::tuple<Ts...>) {}(t); };
template <config_desc_c DESCR_T>
class ConfigHolder
{
protected:
/* helper definitions */
// deduce unique value types of the given config records
template <config_desc_c TplT>
struct deduce_val_types;
template <config_record_c RT>
struct deduce_val_types<std::tuple<RT>> {
using value_type_t = std::tuple<decltype(RT::value)>;
};
template <config_record_c RT, config_record_c... RTs>
struct deduce_val_types<std::tuple<RT, RTs...>> {
using value_type_t =
std::conditional_t<(std::same_as<RT, RTs> || ...),
typename deduce_val_types<std::tuple<RTs...>>::value_type_t,
decltype(std::tuple_cat(
std::declval<std::tuple<decltype(RT::value)>>(),
std::declval<typename deduce_val_types<std::tuple<RTs...>>::value_type_t>()))>;
};
template <config_desc_c TplT>
using deduce_val_types_t = typename deduce_val_types<TplT>::value_type_t;
// deduce std::variant type from std::tuple element types
template <mcc::traits::mcc_tuple_c TplT>
struct variant_from_tuple;
template <typename T, typename... Ts>
struct variant_from_tuple<std::tuple<T, Ts...>> {
using variant_t = std::variant<T, Ts...>;
};
template <mcc::traits::mcc_tuple_c TplT>
using variant_from_tuple_t = typename variant_from_tuple<TplT>::variant_t;
public:
static constexpr char COMMENT_SYMBOL = '#';
static constexpr char KEY_VALUE_DELIM = '=';
static constexpr char VALUE_ARRAY_DELIM = ',';
// very simple de-serializer (only numbers and strings)
inline static auto defaultDeserializeFunc = [](this auto&& self, std::string_view str, auto& value) {
using value_t = std::decay_t<decltype(value)>;
if constexpr (std::is_arithmetic_v<value_t>) {
auto v = mcc::utils::numFromStr<value_t>(str);
if (!v.has_value()) {
return false;
}
value = v.value();
} else if constexpr (mcc::traits::mcc_output_char_range<value_t>) {
value_t r;
std::ranges::copy(str, std::back_inserter(r));
value = r;
} else if constexpr (std::ranges::range<value_t>) {
using el_t = std::ranges::range_value_t<value_t>;
if constexpr (std::is_reference_v<el_t> || std::is_const_v<el_t>) { // no reference or constants allowed
return false;
}
value_t r;
el_t elem;
auto els = std::views::split(str, VALUE_ARRAY_DELIM);
for (auto const& el : els) {
// if (std::forward<decltype(self)>(self)(std::string_view(el), elem)) {
if (std::forward<decltype(self)>(self)(mcc::utils::trimSpaces(el), elem)) {
std::back_inserter(r) = elem;
} else {
return false;
}
}
value = r;
} else if constexpr (mcc::traits::mcc_time_duration_c<value_t>) {
typename value_t::rep vd;
bool ok = self(str, vd);
if (ok) {
value = value_t{vd};
}
} else {
return false;
}
return true;
};
ConfigHolder(DESCR_T desc)
{
[desc = std::move(desc), this]<size_t... Is>(std::index_sequence<Is...>) {
((_configDB[std::get<Is>(desc).key] = std::get<Is>(desc).value), ...);
}(std::make_index_sequence<std::tuple_size_v<DESCR_T>>());
}
virtual ~ConfigHolder() = default;
// deser_func - de-serialization function, i.e., a conversional function
// from string-representation to some value
//
// DeserFuncT is a type of callable with signature:
// bool deser_func(std::string_view str, value_type& val)
// where
// str - input (serialized) string-representation of configuration
// item value
// 'value_type' - must take into account all possible value types
// in the input configuration description (see constructor)
//
// most suitable implementation is a generic lambda function, i.e.:
// auto deser_func(std::string_view str, auto& cnv_val)->bool {
// ...
// };
template <std::ranges::contiguous_range R, typename DeserFuncT>
std::error_code parse(const R& buffer, DeserFuncT&& deser_func)
requires std::same_as<std::remove_cvref_t<std::ranges::range_value_t<R>>, char>
{
if constexpr (std::is_array_v<std::decay_t<R>>) { // char*, const char*
return parse(std::string_view{std::forward<R>(buffer)}, std::forward<DeserFuncT>(deser_func));
}
auto curr_buffer = std::string_view(buffer.begin(), buffer.end());
std::string_view key, value;
bool buffer_end = false;
do {
auto it = std::ranges::find(curr_buffer, '\n');
if (it == curr_buffer.end()) {
buffer_end = true;
}
auto sv =
mcc::utils::trimSpaces(std::string_view(curr_buffer.begin(), it), mcc::utils::TrimType::TRIM_LEFT);
curr_buffer = {it + 1, curr_buffer.end()};
if (sv.size() && (sv[0] != COMMENT_SYMBOL)) {
it = std::ranges::find(sv, KEY_VALUE_DELIM);
if (it != sv.begin()) { // ignore an empty key
key = mcc::utils::trimSpaces(std::string_view(sv.begin(), it), mcc::utils::TrimType::TRIM_RIGHT);
auto rec_it = _configDB.find(key);
if (rec_it != _configDB.end()) { // ignore key if it is not in description
value =
mcc::utils::trimSpaces(std::string_view(it + 1, sv.end()), mcc::utils::TrimType::TRIM_BOTH);
bool ok = forIndex(rec_it->second, value, std::forward<DeserFuncT>(deser_func),
rec_it->second.index());
if (!ok) {
return std::make_error_code(std::errc::invalid_argument);
}
}
}
}
} while (!buffer_end);
return {};
}
template <std::ranges::contiguous_range R>
std::error_code parse(const R& buffer)
{
return parse(buffer, defaultDeserializeFunc);
}
template <typename T>
std::expected<T, std::error_code> value(std::string_view key)
{
auto it = _configDB.find(key);
if (it == _configDB.end()) {
return std::unexpected(std::make_error_code(std::errc::argument_out_of_domain));
}
std::expected<T, std::error_code> res;
std::visit(
[&res](auto&& val) {
using v_t = std::decay_t<decltype(val)>;
if constexpr (std::convertible_to<v_t, T>) {
res = static_cast<T>(std::forward<decltype(val)>(val));
// } else if constexpr (std::constructible_from<T, v_t>) {
// res = T{std::forward<decltype(val)>(val)};
} else {
res = std::unexpected(std::make_error_code(std::errc::invalid_argument));
}
},
it->second);
return res;
}
template <typename T>
bool update(std::string_view key, const T& value)
{
auto it = _configDB.find(key);
if (it == _configDB.end()) {
return false;
}
bool ok;
std::visit(
[&value, &ok](auto& val) {
using v_t = std::decay_t<decltype(val)>;
if constexpr (std::convertible_to<T, v_t>) {
val = static_cast<v_t>(value);
ok = true;
} else {
ok = false;
}
},
it->second);
return ok;
}
protected:
std::unordered_map<std::string_view, variant_from_tuple_t<deduce_val_types_t<DESCR_T>>> _configDB;
template <size_t I = 0, typename FuncT, typename... Ts>
bool forIndex(std::variant<Ts...>& var, std::string_view s, FuncT&& func, size_t idx)
{
if constexpr (I < sizeof...(Ts)) {
if (I == idx) {
using v_t = std::tuple_element_t<I, std::tuple<Ts...>>;
v_t val;
bool ok = std::forward<FuncT>(func)(s, val);
if (ok) {
var = val;
}
return ok;
} else {
return forIndex<I + 1>(var, s, std::forward<FuncT>(func), idx);
}
}
return false;
}
};
/* ASTOROSIB FM700 MOUNT CONFIGURATION CLASS */ /* ASTOROSIB FM700 MOUNT CONFIGURATION CLASS */
@ -891,317 +623,6 @@ public:
}; };
class Asibfm700MountConfig2 : protected ConfigHolder<decltype(Asibfm700MountConfigDefaults)>
{
using base_t = ConfigHolder<decltype(Asibfm700MountConfigDefaults)>;
public:
using base_t::update;
using base_t::value;
Asibfm700MountConfig2() : base_t(Asibfm700MountConfigDefaults)
{
updateAll();
}
~Asibfm700MountConfig2() = default;
std::error_code load(const std::filesystem::path& path)
{
std::string buffer;
std::error_code ec;
auto sz = std::filesystem::file_size(path, ec);
if (!ec && sz) {
std::ifstream fst(path);
try {
buffer.resize(sz);
fst.read(buffer.data(), sz);
fst.close();
ec = base_t::parse(buffer, deserializer);
if (!ec) {
updateAll();
}
} catch (std::ios_base::failure const& ex) {
ec = ex.code();
} catch (std::length_error const& ex) {
ec = std::make_error_code(std::errc::no_buffer_space);
} catch (std::bad_alloc const& ex) {
ec = std::make_error_code(std::errc::not_enough_memory);
} catch (...) {
ec = std::make_error_code(std::errc::operation_canceled);
}
}
return ec;
}
template <typename T>
bool update(std::string_view key, const T& value)
{
bool ok = base_t::update(key, value);
if (ok) {
updateAll();
}
return ok;
}
std::chrono::milliseconds hardwarePollingPeriod{};
mcc::MccAngle siteLatitude{};
mcc::MccAngle siteLongitude{};
double siteElevation{};
double refractWavelength{};
std::string leapSecondFilename{};
std::string bulletinAFilename{};
mcc::MccAngle pzMinAltitude{};
mcc::MccAngle pzLimitSwitchHAMin{};
mcc::MccAngle pzLimitSwitchHAMax{};
AsibFM700ServoController::hardware_config_t servoControllerConfig{};
mcc::MccSimpleMovingModelParams movingModelParams{};
Asibfm700PCM::pcm_data_t pcmData{};
protected:
void updateAll()
{
hardwarePollingPeriod = std::get<decltype(hardwarePollingPeriod)>(this->_configDB["hardwarePollingPeriod"]);
// CCTE
siteLatitude = std::get<mcc::MccAngle>(this->_configDB["siteLatitude"]);
siteLongitude = std::get<mcc::MccAngle>(this->_configDB["siteLongitude"]);
siteElevation = std::get<double>(this->_configDB["siteElevation"]);
refractWavelength = std::get<double>(this->_configDB["refractWavelength"]);
leapSecondFilename = std::get<std::string>(this->_configDB["leapSecondFilename"]);
bulletinAFilename = std::get<std::string>(this->_configDB["bulletinAFilename"]);
// prohibited zones
pzMinAltitude = std::get<mcc::MccAngle>(this->_configDB["pzMinAltitude"]);
pzLimitSwitchHAMin = std::get<mcc::MccAngle>(this->_configDB["pzLimitSwitchHAMin"]);
pzLimitSwitchHAMax = std::get<mcc::MccAngle>(this->_configDB["pzLimitSwitchHAMax"]);
// hardware config
servoControllerConfig.hwConfig = {};
servoControllerConfig.MountDevPath = std::get<std::string>(this->_configDB["MountDevPath"]);
servoControllerConfig.EncoderDevPath = std::get<std::string>(this->_configDB["EncoderDevPath"]);
servoControllerConfig.EncoderXDevPath = std::get<std::string>(this->_configDB["EncoderXDevPath"]);
servoControllerConfig.EncoderYDevPath = std::get<std::string>(this->_configDB["EncoderYDevPath"]);
servoControllerConfig.devConfig.MountDevPath = servoControllerConfig.MountDevPath.data();
servoControllerConfig.devConfig.EncoderDevPath = servoControllerConfig.EncoderDevPath.data();
servoControllerConfig.devConfig.EncoderXDevPath = servoControllerConfig.EncoderXDevPath.data();
servoControllerConfig.devConfig.EncoderYDevPath = servoControllerConfig.EncoderYDevPath.data();
servoControllerConfig.devConfig.RunModel = std::get<int>(this->_configDB["RunModel"]);
servoControllerConfig.devConfig.MountDevSpeed = std::get<int>(this->_configDB["MountDevSpeed"]);
servoControllerConfig.devConfig.EncoderDevSpeed = std::get<int>(this->_configDB["EncoderDevSpeed"]);
servoControllerConfig.devConfig.SepEncoder = std::get<int>(this->_configDB["SepEncoder"]);
std::chrono::duration<double> secs; // seconds as floating-point
secs = std::get<std::chrono::milliseconds>(this->_configDB["MountReqInterval"]);
servoControllerConfig.devConfig.MountReqInterval = secs.count();
secs = std::get<std::chrono::milliseconds>(this->_configDB["EncoderReqInterval"]);
servoControllerConfig.devConfig.EncoderReqInterval = secs.count();
secs = std::get<std::chrono::milliseconds>(this->_configDB["EncoderSpeedInterval"]);
servoControllerConfig.devConfig.EncoderSpeedInterval = secs.count();
std::vector<double> pid = std::get<std::vector<double>>(this->_configDB["XPIDC"]);
if (pid.size() > 2) {
servoControllerConfig.devConfig.XPIDC.P = pid[0];
servoControllerConfig.devConfig.XPIDC.I = pid[1];
servoControllerConfig.devConfig.XPIDC.D = pid[2];
}
pid = std::get<std::vector<double>>(this->_configDB["XPIDV"]);
if (pid.size() > 2) {
servoControllerConfig.devConfig.XPIDV.P = pid[0];
servoControllerConfig.devConfig.XPIDV.I = pid[1];
servoControllerConfig.devConfig.XPIDV.D = pid[2];
}
pid = std::get<std::vector<double>>(this->_configDB["YPIDC"]);
if (pid.size() > 2) {
servoControllerConfig.devConfig.YPIDC.P = pid[0];
servoControllerConfig.devConfig.YPIDC.I = pid[1];
servoControllerConfig.devConfig.YPIDC.D = pid[2];
}
pid = std::get<std::vector<double>>(this->_configDB["YPIDV"]);
if (pid.size() > 2) {
servoControllerConfig.devConfig.YPIDV.P = pid[0];
servoControllerConfig.devConfig.YPIDV.I = pid[1];
servoControllerConfig.devConfig.YPIDV.D = pid[2];
}
// slew and track parameters
movingModelParams.telemetryTimeout =
std::get<decltype(movingModelParams.telemetryTimeout)>(this->_configDB["telemetryTimeout"]);
movingModelParams.minTimeToPZone =
std::get<decltype(movingModelParams.minTimeToPZone)>(this->_configDB["minTimeToPZone"]);
movingModelParams.updatingPZoneInterval =
std::get<decltype(movingModelParams.updatingPZoneInterval)>(this->_configDB["updatingPZoneInterval"]);
movingModelParams.slewToleranceRadius =
std::get<decltype(movingModelParams.slewToleranceRadius)>(this->_configDB["slewToleranceRadius"]);
movingModelParams.adjustCoordDiff =
std::get<decltype(movingModelParams.adjustCoordDiff)>(this->_configDB["adjustCoordDiff"]);
movingModelParams.adjustCycleInterval =
std::get<decltype(movingModelParams.adjustCycleInterval)>(this->_configDB["adjustCycleInterval"]);
movingModelParams.slewTimeout =
std::get<decltype(movingModelParams.slewTimeout)>(this->_configDB["slewTimeout"]);
movingModelParams.timeShiftToTargetPoint =
std::get<decltype(movingModelParams.timeShiftToTargetPoint)>(this->_configDB["timeShiftToTargetPoint"]);
movingModelParams.trackingCycleInterval =
std::get<decltype(movingModelParams.trackingCycleInterval)>(this->_configDB["trackingCycleInterval"]);
// PCM data
pcmData.type = std::get<decltype(pcmData.type)>(this->_configDB["pcmType"]);
pcmData.siteLatitude = std::get<mcc::MccAngle>(this->_configDB["siteLatitude"]);
pid = std::get<std::vector<double>>(this->_configDB["pcmGeomCoeffs"]);
if (pid.size() >= 9) { // must be 9 coefficients
pcmData.geomCoefficients = {.zeroPointX = pid[0],
.zeroPointY = pid[1],
.collimationErr = pid[2],
.nonperpendErr = pid[3],
.misalignErr1 = pid[4],
.misalignErr2 = pid[5],
.tubeFlexure = pid[6],
.forkFlexure = pid[7],
.DECaxisFlexure = pid[8]};
}
std::vector<size_t> dd = std::get<decltype(dd)>(this->_configDB["pcmBsplineDegree"]);
if (dd.size() >= 2) {
pcmData.bspline.bsplDegreeX = dd[0] > 0 ? dd[0] : 3;
pcmData.bspline.bsplDegreeY = dd[1] > 0 ? dd[1] : 3;
}
pid = std::get<std::vector<double>>(this->_configDB["pcmBsplineXknots"]);
// pid must contains interior and border (single point for each border) knots so minimal length must be 2
if (pid.size() >= 2) {
// generate full knots array (with border knots)
size_t Nknots = pid.size() + pcmData.bspline.bsplDegreeX * 2 - 2;
pcmData.bspline.knotsX.resize(Nknots);
for (size_t i = 0; i <= pcmData.bspline.bsplDegreeX; ++i) { // border knots
pcmData.bspline.knotsX[i] = pid[0];
pcmData.bspline.knotsX[Nknots - i - 1] = pid.back();
}
for (size_t i = 0; i < (pid.size() - 2); ++i) { // interior knots
pcmData.bspline.knotsX[i + pcmData.bspline.bsplDegreeX] = pid[1 + i];
}
}
pid = std::get<std::vector<double>>(this->_configDB["pcmBsplineYknots"]);
// pid must contains interior and border (single point for each border) knots so minimal length must be 2
if (pid.size() >= 2) {
// generate full knots array (with border knots)
size_t Nknots = pid.size() + pcmData.bspline.bsplDegreeY * 2 - 2;
pcmData.bspline.knotsY.resize(Nknots);
for (size_t i = 0; i <= pcmData.bspline.bsplDegreeY; ++i) { // border knots
pcmData.bspline.knotsY[i] = pid[0];
pcmData.bspline.knotsY[Nknots - i - 1] = pid.back();
}
for (size_t i = 0; i < (pid.size() - 2); ++i) { // interior knots
pcmData.bspline.knotsY[i + pcmData.bspline.bsplDegreeY] = pid[1 + i];
}
}
// minimal allowed number of B-spline coefficients
size_t Ncoeffs = pcmData.type == mcc::MccDefaultPCMType::PCM_TYPE_GEOMETRY
? 0
: (pcmData.bspline.knotsX.size() - pcmData.bspline.bsplDegreeX - 1) *
(pcmData.bspline.knotsY.size() - pcmData.bspline.bsplDegreeY - 1);
pid = std::get<std::vector<double>>(this->_configDB["pcmBsplineXcoeffs"]);
if (pid.size() >= Ncoeffs) {
pcmData.bspline.coeffsX.resize(Ncoeffs);
for (size_t i = 0; i < Ncoeffs; ++i) {
pcmData.bspline.coeffsX[i] = pid[i];
}
}
pid = std::get<std::vector<double>>(this->_configDB["pcmBsplineYcoeffs"]);
if (pid.size() >= Ncoeffs) {
pcmData.bspline.coeffsY.resize(Ncoeffs);
for (size_t i = 0; i < Ncoeffs; ++i) {
pcmData.bspline.coeffsY[i] = pid[i];
}
}
}
inline static auto deserializer = [](std::string_view str, auto& value) {
using value_t = std::decay_t<decltype(value)>;
bool ok = true;
if constexpr (std::is_arithmetic_v<value_t> || mcc::traits::mcc_output_char_range<value_t> ||
std::ranges::range<value_t> || mcc::traits::mcc_time_duration_c<value_t>) {
return base_t::defaultDeserializeFunc(str, value);
} else if constexpr (std::same_as<value_t, mcc::MccAngle>) { // assume here all angles are in degrees
double vd;
ok = base_t::defaultDeserializeFunc(str, vd);
if (ok) {
value = mcc::MccAngle(vd, mcc::MccDegreeTag{});
}
} else if constexpr (std::same_as<value_t, mcc::MccDefaultPCMType>) {
std::string vstr;
ok = base_t::defaultDeserializeFunc(str, vstr);
auto s = mcc::utils::trimSpaces(vstr);
if (ok) {
if (s == mcc::MccDefaultPCMTypeString<mcc::MccDefaultPCMType::PCM_TYPE_GEOMETRY>) {
value = mcc::MccDefaultPCMType::PCM_TYPE_GEOMETRY;
} else if (s == mcc::MccDefaultPCMTypeString<mcc::MccDefaultPCMType::PCM_TYPE_GEOMETRY_BSPLINE>) {
value = mcc::MccDefaultPCMType::PCM_TYPE_GEOMETRY;
} else if (s == mcc::MccDefaultPCMTypeString<mcc::MccDefaultPCMType::PCM_TYPE_BSPLINE>) {
value = mcc::MccDefaultPCMType::PCM_TYPE_BSPLINE;
} else {
return false;
}
}
} else {
return false;
}
return ok;
};
};
static constexpr std::string_view Asibfm700MountConfigString = static constexpr std::string_view Asibfm700MountConfigString =
R"--( R"--(

View File

@ -14,13 +14,13 @@ Asibfm700MountNetServer::Asibfm700MountNetServer(asio::io_context& ctx,
// to avoid possible compiler optimization (one needs to catch 'mount' strictly by reference) // to avoid possible compiler optimization (one needs to catch 'mount' strictly by reference)
auto* mount_ptr = &mount; auto* mount_ptr = &mount;
base_t::_handleMessageFunc = [base_hndl_func = std::move(base_t::_handleMessageFunc), mount_ptr, base_t::_handleMessageFunc = [mount_ptr, this](std::string_view command) {
this](std::string_view command) {
using mount_error_t = typename Asibfm700Mount::error_t; using mount_error_t = typename Asibfm700Mount::error_t;
std::error_code err{}; std::error_code err{};
Asibfm700NetMessage input_msg; Asibfm700NetMessage input_msg;
Asibfm700NetMessage<handle_message_func_result_t> output_msg; using output_msg_t = Asibfm700NetMessage<handle_message_func_result_t>;
output_msg_t output_msg;
auto ec = parseMessage(command, input_msg); auto ec = parseMessage(command, input_msg);
@ -41,7 +41,8 @@ Asibfm700MountNetServer::Asibfm700MountNetServer(asio::io_context& ctx,
ASIBFM700_COMMPROTO_KEYWORD_METEO_STR, mount_ptr->getStateERFA().meteo); ASIBFM700_COMMPROTO_KEYWORD_METEO_STR, mount_ptr->getStateERFA().meteo);
} }
} else { } else {
output_msg = base_t::handleMessage<decltype(output_msg)>(input_msg, mount_ptr); // basic network message processing
output_msg = base_t::handleMessage<output_msg_t>(input_msg, mount_ptr);
} }
} }

View File

@ -21,35 +21,7 @@ int main()
auto desc = std::make_tuple(rec_t{"A", 1}, rec_t{"B", 2.2}, rec_t{"C", std::string("EEE")}, rec_t{"D", 3.3}, auto desc = std::make_tuple(rec_t{"A", 1}, rec_t{"B", 2.2}, rec_t{"C", std::string("EEE")}, rec_t{"D", 3.3},
rec_t{"E", std::vector<int>{1, 2, 3}}); rec_t{"E", std::vector<int>{1, 2, 3}});
asibfm700::ConfigHolder ch(desc); std::error_code err;
// auto err = ch.parse(cfg_str, [](auto s, auto &v) {
// if constexpr (std::is_arithmetic_v<std::decay_t<decltype(v)>>) {
// v = 77;
// } else {
// v = std::string{s.begin(), s.end()};
// }
// return true;
// });
auto err = ch.parse(cfg_str);
auto v = ch.value<float>("A");
std::cout << v.value() << "\n";
// auto v2 = ch.value<std::string>("D");
auto v2 = ch.value<std::string>("C");
std::cout << v2.value_or("<no value>") << "\n";
auto v3 = ch.value<std::vector<int>>("E");
std::cout << "[";
for (auto& el : v3.value_or({0, 0, 0})) {
std::cout << el << " ";
}
std::cout << "]\n";
std::ofstream fst("/tmp/cfg.cfg"); std::ofstream fst("/tmp/cfg.cfg");
fst << asibfm700::Asibfm700MountConfigString; fst << asibfm700::Asibfm700MountConfigString;
@ -85,7 +57,7 @@ int main()
if (ec) { if (ec) {
std::cout << "EC = " << ec.message() << "\n"; std::cout << "EC = " << ec.message() << "\n";
} else { } else {
v3 = kvh.getValue<std::vector<int>>("E"); auto v3 = kvh.getValue<std::vector<int>>("E");
std::cout << "["; std::cout << "[";
for (auto& el : v3.value_or({0, 0, 0})) { for (auto& el : v3.value_or({0, 0, 0})) {
std::cout << el << " "; std::cout << el << " ";

View File

@ -907,148 +907,17 @@ public:
mount_error_t m_err; mount_error_t m_err;
MccNetMessage input_msg; MccNetMessage input_msg;
MccNetMessage<handle_message_func_result_t> output_msg; using output_msg_t = MccNetMessage<handle_message_func_result_t>;
output_msg_t output_msg;
auto ec = parseMessage(command, input_msg); auto ec = parseMessage(command, input_msg);
if (ec) { if (ec) {
output_msg.construct(MCC_COMMPROTO_KEYWORD_SERVER_ERROR_STR, ec); output_msg.construct(MCC_COMMPROTO_KEYWORD_SERVER_ERROR_STR, ec);
} else { } else {
output_msg = handleMessage<decltype(output_msg)>(input_msg, mount_ptr); output_msg = handleMessage<output_msg_t>(input_msg, mount_ptr);
} }
return output_msg.byteRepr(); return output_msg.byteRepr();
// std::error_code err{};
// if (auto ec = parseMessage(command, input_msg)) {
// output_msg.construct(MCC_COMMPROTO_KEYWORD_SERVER_ERROR_STR, ec);
// } else {
// if (input_msg.withKey(MCC_COMMPROTO_KEYWORD_SERVER_ACK_STR)) { // strange!
// output_msg.construct(MCC_COMMPROTO_KEYWORD_SERVER_ACK_STR, command);
// } else if (input_msg.withKey(MCC_COMMPROTO_KEYWORD_SERVER_ERROR_STR)) { // ??!!!
// output_msg.construct(MCC_COMMPROTO_KEYWORD_SERVER_ACK_STR, command);
// } else if (input_msg.withKey(MCC_COMMPROTO_KEYWORD_RESTART_SERVER_STR)) {
// this->restart();
// output_msg.construct(MCC_COMMPROTO_KEYWORD_SERVER_ACK_STR, command);
// } else if (input_msg.withKey(MCC_COMMPROTO_KEYWORD_INIT_STR)) {
// m_err = mount_ptr->initMount();
// if (m_err) {
// err = mcc_deduce_error_code(m_err, MccGenericMountNetworkServerErrorCode::ERROR_MOUNT_INIT);
// }
// } else if (input_msg.withKey(MCC_COMMPROTO_KEYWORD_STOP_STR)) {
// m_err = mount_ptr->stopMount();
// if (m_err) {
// err = mcc_deduce_error_code(m_err, MccGenericMountNetworkServerErrorCode::ERROR_MOUNT_STOP);
// }
// } else if (input_msg.withKey(MCC_COMMPROTO_KEYWORD_SLEW_STR)) {
// m_err = mount_ptr->slewToTarget(false);
// if (m_err) {
// err = mcc_deduce_error_code(m_err, MccGenericMountNetworkServerErrorCode::ERROR_MOUNT_SLEW);
// }
// } else if (input_msg.withKey(MCC_COMMPROTO_KEYWORD_MOVE_STR)) {
// m_err = mount_ptr->slewToTarget(true);
// if (m_err) {
// err = mcc_deduce_error_code(m_err, MccGenericMountNetworkServerErrorCode::ERROR_MOUNT_MOVE);
// }
// } else if (input_msg.withKey(MCC_COMMPROTO_KEYWORD_TRACK_STR)) {
// m_err = mount_ptr->trackTarget();
// if (m_err) {
// err = mcc_deduce_error_code(m_err, MccGenericMountNetworkServerErrorCode::ERROR_MOUNT_TRACK);
// }
// } else if (input_msg.withKey(MCC_COMMPROTO_KEYWORD_COORDFMT_STR)) {
// auto v = input_msg.paramValue<MccCoordinateSerializer::SerializedCoordFormat>(0);
// if (v) {
// _coordFormat = v.value();
// output_msg.construct(MCC_COMMPROTO_KEYWORD_SERVER_ACK_STR, command);
// } else {
// err = v.error();
// }
// } else if (input_msg.withKey(MCC_COMMPROTO_KEYWORD_COORDPREC_STR)) {
// auto v = input_msg.paramValue<MccCoordinateSerializer::SexagesimalCoordPrec>(0);
// if (v) {
// _coordPrec = v.value();
// output_msg.construct(MCC_COMMPROTO_KEYWORD_SERVER_ACK_STR, command);
// } else {
// err = v.error();
// }
// } else if (input_msg.withKey(MCC_COMMPROTO_KEYWORD_TARGET_STR)) {
// // by default return ICRS coordinates
// MccCelestialPoint cp{.pair_kind = MccCoordPairKind::COORDS_KIND_RADEC_ICRS};
// auto sz = input_msg.paramSize();
// if (sz) { // set or get operation
// auto vc = input_msg.paramValue<MccCelestialPoint>(0); // is it set operation?
// if (vc) { // coordinates are given - set
// operation
// auto m_err = mount_ptr->setPointingTarget(vc.value());
// if (m_err) {
// if (m_err) {
// err = mcc_deduce_error_code(
// m_err, MccGenericMountNetworkServerErrorCode::ERROR_MOUNT_SET_TARGET);
// }
// } else {
// output_msg.construct(MCC_COMMPROTO_KEYWORD_SERVER_ACK_STR, command);
// }
// } else {
// auto vp = input_msg.paramValue<MccCoordPairKind>(0);
// if (vp) { // coordinate pair kind is given
// cp.pair_kind = vp.value();
// err = coordsFromTelemetryData(*mount_ptr, true, cp);
// if (!err) {
// output_msg.construct(MCC_COMMPROTO_KEYWORD_SERVER_ACK_STR,
// MCC_COMMPROTO_KEYWORD_TARGET_STR, cp);
// }
// } else { // invalid command!!!
// err = vp.error();
// }
// }
// } else { // get operation
// err = coordsFromTelemetryData(*mount_ptr, true, cp);
// if (!err) {
// output_msg.construct(MCC_COMMPROTO_KEYWORD_SERVER_ACK_STR,
// MCC_COMMPROTO_KEYWORD_TARGET_STR,
// _coordFormat, _coordPrec, cp);
// }
// }
// } else if (input_msg.withKey(MCC_COMMPROTO_KEYWORD_MOUNT_STR)) {
// // by default return ICRS coordinates
// MccCelestialPoint cp{.pair_kind = MccCoordPairKind::COORDS_KIND_RADEC_ICRS};
// if (input_msg.paramSize()) { // ccordinate pair kind is given
// auto vp = input_msg.paramValue<MccCoordPairKind>(0);
// if (vp) { // coordinate pair kind is given
// cp.pair_kind = vp.value();
// err = coordsFromTelemetryData(*mount_ptr, false, cp);
// if (!err) {
// output_msg.construct(MCC_COMMPROTO_KEYWORD_SERVER_ACK_STR,
// MCC_COMMPROTO_KEYWORD_MOUNT_STR, cp);
// }
// } else { // invalid command!!!
// err = vp.error();
// }
// } else {
// err = coordsFromTelemetryData(*mount_ptr, false, cp);
// if (!err) {
// output_msg.construct(MCC_COMMPROTO_KEYWORD_SERVER_ACK_STR,
// MCC_COMMPROTO_KEYWORD_MOUNT_STR,
// _coordFormat, _coordPrec, cp);
// }
// }
// } else {
// err = std::make_error_code(std::errc::invalid_argument);
// }
// if (err) { // send error description
// output_msg.construct(MCC_COMMPROTO_KEYWORD_SERVER_ERROR_STR, err);
// }
// // else { // send ACK with copy of the input message
// // output_msg.construct(MCC_COMMPROTO_KEYWORD_SERVER_ACK_STR, command);
// // }
// }
// return output_msg.byteRepr();
}; };
} }

View File

@ -237,204 +237,6 @@ static constexpr std::array MCC_COMMPROTO_VALID_KEYS_HASH = []<size_t... Is>(std
}(std::make_index_sequence<MCC_COMMPROTO_VALID_KEYS.size()>()); }(std::make_index_sequence<MCC_COMMPROTO_VALID_KEYS.size()>());
static constexpr size_t MCC_COMMPROTO_KEYWORD_SERVER_ACK_HASH =
mcc::utils::FNV1aHash(MCC_COMMPROTO_KEYWORD_SERVER_ACK_STR);
static constexpr size_t MCC_COMMPROTO_KEYWORD_SERVER_ERROR_HASH =
mcc::utils::FNV1aHash(MCC_COMMPROTO_KEYWORD_SERVER_ERROR_STR);
static constexpr size_t MCC_COMMPROTO_KEYWORD_TARGET_HASH = mcc::utils::FNV1aHash(MCC_COMMPROTO_KEYWORD_TARGET_STR);
static constexpr size_t MCC_COMMPROTO_KEYWORD_MOUNT_HASH = mcc::utils::FNV1aHash(MCC_COMMPROTO_KEYWORD_MOUNT_STR);
template <traits::mcc_char_range T = std::string_view, std::ranges::output_range<T> RT = std::vector<T>>
struct mcc_netmsg_parse_result_t {
size_t keyword_hash;
T keyword;
RT params;
};
// network message parsing result class concept
template <typename T>
concept mcc_netmsg_parse_result_c = requires(T t) {
requires std::same_as<decltype(t.keyword_hash), size_t>; // hash of keyword
requires traits::mcc_char_range<decltype(t.keyword)>; // keyword char-range representation
// a range of parameters char-range representations
requires std::ranges::output_range<decltype(t.params), decltype(t.keyword)>;
};
// the function returns hash of message keyword
// if 'from_server' is true then given network message is considered as a server response, i.e.,
// valid keywords are "ACK" or "ERROR"
//
// the funtions returns false in the case of invalid message format and true otherwise
//
template <traits::mcc_input_char_range IR, mcc_netmsg_parse_result_c ResT>
bool mcc_parse_netmsg(const IR& netmsg, ResT& parse_res, bool from_server = false)
{
if (std::ranges::size(netmsg) == 0) {
return false;
};
auto found = std::ranges::search(netmsg, MCC_COMMPROTO_KEYPARAM_DELIM_SEQ);
if (std::distance(netmsg.begin(), found.begin()) == 0) {
return false;
}
const size_t hash = mcc::utils::FNV1aHash(netmsg.begin(), found.begin());
auto it = std::ranges::find(MCC_COMMPROTO_VALID_KEYS_HASH, hash);
if (it == MCC_COMMPROTO_VALID_KEYS_HASH.end()) {
return false;
}
if (from_server) { // only ACK or ERROR
auto ok = hash == MCC_COMMPROTO_VALID_KEYS_HASH[0] || hash == MCC_COMMPROTO_VALID_KEYS_HASH[1];
if (!ok) {
return false;
}
}
parse_res.keyword_hash = hash;
parse_res.keyword = {netmsg.begin(), found.begin()};
auto pars = netmsg | std::views::drop(std::distance(netmsg.begin(), found.end())) |
std::views::split(MCC_COMMPROTO_PARAMPARAM_DELIM_SEQ);
decltype(parse_res.params) res;
for (auto const& el : pars) { // parameters
std::back_inserter(res) = {el.begin(), el.end()};
}
parse_res.params = std::move(res);
return true;
}
// construct network message
// the function returns false if input keyword is not valid one (see MCC_COMMPROTO_VALID_KEYS)!
template <typename... PTs>
bool mcc_netmsg_construct(traits::mcc_output_char_range auto& msg,
traits::mcc_input_char_range auto const& keyword,
PTs... params)
{
const size_t hash = mcc::utils::FNV1aHash(keyword);
if (!std::ranges::contains(MCC_COMMPROTO_VALID_KEYS_HASH, hash)) {
return false;
}
msg = {keyword.begin(), keyword.end()};
if constexpr (sizeof...(PTs)) {
std::ranges::copy(MCC_COMMPROTO_KEYPARAM_DELIM_SEQ, std::back_inserter(msg));
[&msg]<typename T, typename... Ts>(this auto&& self, const T& par, const Ts&... pars) {
if constexpr (std::is_arithmetic_v<T>) {
std::ranges::copy(std::to_string(par), std::back_inserter(msg));
} else if constexpr (std::convertible_to<T, std::string>) {
std::ranges::copy(static_cast<std::string>(par), std::back_inserter(msg));
} else if constexpr (std::constructible_from<std::string, T>) {
std::ranges::copy(std::string(par), std::back_inserter(msg));
} else if constexpr (traits::mcc_char_range<T>) {
std::ranges::copy(std::string(par.begin(), par.end()), std::back_inserter(msg));
} else if constexpr (std::same_as<T, MccCoordPairKind>) {
std::ranges::copy(mcc_pairkind2str(par), std::back_inserter(msg));
} else {
static_assert(false, "UNSUPPORTED TYPE!!!");
}
if constexpr (sizeof...(Ts)) {
std::ranges::copy(MCC_COMMPROTO_PARAMPARAM_DELIM_SEQ, std::back_inserter(msg));
std::forward<decltype(self)>(self)(pars...);
}
}(params...);
}
return true;
}
// the function convert given network message parsing result class to
// celestial point coordinates according to parsed message parameters.
//
// It is assumed that the coordinates and their type are contained in the consecutive elements of the input array
// starting from the element 'from_idx' (zero-based):
//
// parse_res.params[..., X-COORD, Y-COORD, XY-KIND, ...]
//
// th last parameter 'XY-KIND' can be omitted and, in this case, 'default_kind' is assumed
//
// NOTE: IT IS ASSUMED THAT THE COORDINATES ARE REPRESENTED AS DEGREES EXPRESSED BY THE NUMBER WITH A FLOATING POINT
// OR IN SEXAGESIMAL FORM. IN THE CASE OF SEXAGESIMAL FORM THE TYPE (DEGREES OR HOURS) OF THE COORDINATE
// REPRESENTATION IS DETERMINED BY 'XY-KIND', E.G.:
// parse_res.params[..., "12:34:52.123", "23:43:56.12", "HADEC", ...]
// 'HADEC' STRING FOR 'XY-KIND' DETERMINES THE FIRST COORDINATE (HOUR ANGLE)
// AS AN ANGLE IN HOUR FORM WHILE THE SECOND ONE (DECLINATION) IN DEGREES
//
//
// The function returns false if it can not convert coordinate string to number or the 'XY-KIND' string is invalid
//
bool mcc_netmsg_get_cpoint(mcc_netmsg_parse_result_c auto const& parse_res,
size_t from_idx,
mcc_celestial_point_c auto& cpoint,
MccCoordPairKind default_kind)
requires std::ranges::contiguous_range<decltype(parse_res.keyword)>
{
if (std::ranges::size(parse_res.params) < (from_idx + 2)) {
return false;
}
MccCoordPairKind kind = default_kind;
if (std::ranges::size(parse_res.params) > (from_idx + 2)) {
kind = mcc_str2pairkind(parse_res.params[from_idx + 2]);
if (kind == MccCoordPairKind::COORDS_KIND_GENERIC) {
return false;
}
}
std::optional<double> ang1, ang2;
switch (kind) {
case mcc::MccCoordPairKind::COORDS_KIND_RADEC_ICRS:
case mcc::MccCoordPairKind::COORDS_KIND_RADEC_APP:
case mcc::MccCoordPairKind::COORDS_KIND_HADEC_APP:
ang1 = mcc::utils::parsAngleString(parse_res.params[from_idx], true);
break;
default:
ang1 = mcc::utils::parsAngleString(parse_res.params[from_idx]);
}
if (!ang1) {
return false;
}
ang2 = mcc::utils::parsAngleString(parse_res.params[from_idx + 1]);
if (!ang2) {
return false;
}
if (kind != mcc::MccCoordPairKind::COORDS_KIND_RADEC_ICRS) {
mcc_tp2tp(std::chrono::system_clock::now(), cpoint.time_point);
} else {
// J2000.0: 11:58:55.816 1 January 2000 UTC
auto tp = std::chrono::sys_days(std::chrono::year_month_day(std::chrono::January / std::chrono::day(1) /
std::chrono::year(2000))) +
std::chrono::hours(11) + std::chrono::minutes(58) + std::chrono::milliseconds(55816);
mcc_tp2tp(tp, cpoint.time_point);
}
cpoint.pair_kind = kind;
cpoint.X = MccAngle(ang1.value(), mcc::MccDegreeTag{}); // to radians
cpoint.Y = MccAngle(ang2.value(), mcc::MccDegreeTag{}); // to radians
return true;
}
template <typename T> template <typename T>
concept mcc_netmsg_valid_keys_c = requires(T t) { concept mcc_netmsg_valid_keys_c = requires(T t) {

View File

@ -2,7 +2,6 @@
#include <list> #include <list>
#include "../mcc_ccte_erfa.h" #include "../mcc_ccte_erfa.h"
#include "../mcc_netserver_proto.h"
#include "../mcc_pzone.h" #include "../mcc_pzone.h"
#include "../mcc_pzone_container.h" #include "../mcc_pzone_container.h"
@ -157,63 +156,5 @@ int main()
std::cout << a1.sexagesimal() << "\n" << a2.sexagesimal() << "\n"; std::cout << a1.sexagesimal() << "\n" << a2.sexagesimal() << "\n";
std::cout << "\n\n";
std::string sm{"ACK TARGET 12:23:45.13 -09.23423525 RADEC"};
// std::vector<std::string> sv;
std::vector<std::string_view> sv;
mcc::network::mcc_netmsg_parse_result_t<> p_res;
auto mr = mcc::network::mcc_parse_netmsg(sm, p_res);
std::cout << "MSG: <" << sm << ">\n";
std::cout << "\t" << p_res.keyword_hash << "\n";
std::cout << "\t[" << p_res.keyword << "]\n";
for (auto const& pr : p_res.params) {
std::cout << "\t[" << pr << "]\n";
}
std::cout << "GET CPOINT RET: "
<< mcc::network::mcc_netmsg_get_cpoint(p_res, 1, cp, mcc::MccCoordPairKind::COORDS_KIND_AZZD) << "\n";
std::cout << "CPOINT.X = " << cp.X << ", CPOINT.Y = " << cp.Y << " ("
<< mcc::network::mcc_pairkind2str(cp.pair_kind) << ")\n";
sm = "ERROR ";
mr = mcc::network::mcc_parse_netmsg(sm, p_res);
std::cout << "MSG: <" << sm << ">\n";
sm[0] = 'e';
std::cout << "\t" << p_res.keyword_hash << "\n";
std::cout << "\t[" << p_res.keyword << "]\n";
for (auto const& pr : p_res.params) {
std::cout << "\t[" << pr << "]\n";
}
mr = mcc::network::mcc_netmsg_construct(sm, mcc::network::MCC_COMMPROTO_KEYWORD_TARGET_STR, 12.3456789,
"34:21:56.132", mcc::MccCoordPairKind::COORDS_KIND_AZZD);
std::cout << "\nNETMSG: [" << sm << "] (" << mr << ")\n";
auto tp = std::chrono::sys_days(
std::chrono::year_month_day(std::chrono::January / std::chrono::day(1) / std::chrono::year(2000)))
// + std::chrono::hours(11) + std::chrono::minutes(58) + std::chrono::duration<double>(55.816);
+ std::chrono::hours(11) + std::chrono::minutes(58) + std::chrono::milliseconds(55816);
std::cout << tp << "\n";
// std::cout << std::chrono::system_clock::now() << "\n";
constexpr std::string_view stv{"RADEC"};
constexpr char ccv[] = "RADEC";
// const auto pk = mcc::network::mcc_str2pairkind(stv);
// const auto pk = mcc::network::mcc_str2pairkind(std::string_view{"RADEC"});
// const auto pk = mcc::network::mcc_str2pairkind("RADEC");
const auto pk = mcc::network::mcc_str2pairkind(ccv);
static_assert(pk == mcc::MccCoordPairKind::COORDS_KIND_RADEC_APP);
return 0; return 0;
} }