lectures/Komp_obr/07-iproc_2.tex

274 lines
8.7 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[10pt,pdf,hyperref={unicode}]{beamer}
\hypersetup{pdfpagemode=FullScreen}
\usepackage{lect}
\title[ëÏÍÐØÀÔÅÒÎÁÑ ÏÂÒÁÂÏÔËÁ. ìÅËÃÉÑ 7.2.]{ëÏÍÐØÀÔÅÒÎÁÑ ÏÂÒÁÂÏÔËÁ ÒÅÚÕÌØÔÁÔÏ× ÉÚÍÅÒÅÎÉÊ}
\subtitle{ìÅËÃÉÑ 7.2. ïÂÒÁÂÏÔËÁ ÉÚÏÂÒÁÖÅÎÉÊ}
\date{1 ÁÐÒÅÌÑ 2021 ÇÏÄÁ}
\begin{document}
% ôÉÔÕÌ
\begin{frame}
\maketitle
\end{frame}
% óÏÄÅÒÖÁÎÉÅ
\begin{frame}
\tableofcontents
\end{frame}
\section{÷ÅÊ×ÌÅÔÙ}
\begin{frame}{÷ÅÊ×ÌÅÔÙ}
\only<1>{\img[0.6]{pyramid}
\begin{block}{ðÉÒÁÍÉÄÁ ÉÚÏÂÒÁÖÅÎÉÊ}
ðÉÒÁÍÉÄÁ ÐÒÉÂÌÉÖÅÎÉÊ (ÁÐÐÒÏËÓÉÍÉÒÕÀÝÉÅ ËÏÜÆÆÉÃÉÅÎÔÙ), ÐÉÒÁÍÉÄÁ ÏÛÉÂÏË (ÄÅÔÁÌÉÚÉÒÕÀÝÉÅ ËÏÜÆÆÉÃÉÅÎÔÙ).
ðÉÒÁÍÉÄÁ ìÁÐÌÁÓÁ (ÔÏÌØËÏ ÐÉÒÁÍÉÄÁ ÏÛÉÂÏË, ËÏÍÐÒÅÓÓÉÑ); ÇÁÕÓÓÏ×Á ÐÉÒÁÍÉÄÁ (ÔÏÌØËÏ ÐÒÉÂÌÉÖÅÎÉÑ, ÓÉÎÔÅÚ
ÔÅËÓÔÕÒ).\end{block}}
\only<2>{\img[0.7]{lappyramid}}
\only<3>{\img[0.5]{orapple}\centerline{
ïÂßÅÄÉÎÅÎÉÅ ÐÉÒÁÍÉÄ ìÁÐÌÁÓÁ.}}
\end{frame}
\begin{frame}{÷ÅÊ×ÌÅÔÙ}
\only<1>{\img[0.6]{2d-haar-basis}}
\only<2>{\img[0.8]{wvpyramid01}}
\only<3>{\img[0.8]{wvpyramid02}}
\only<4>{\img[0.8]{wvpyramid}}
\only<5>{\img[0.8]{wvpyramid03}}
\end{frame}
\begin{frame}{ðÁËÅÔÙ ×ÅÊ×ÌÅÔÏ×}
\only<1>{\img[0.95]{wpack01}}
\only<2>{\img[0.95]{wpack02}}
\only<3>{\img[0.7]{wpack03}}
\only<4>{\img[0.8]{wpack04}\tiny (a) normal brain; (b) 2-level DWT of normal brain; (c) 2-level
DWPT of normal brain; (d) AD brain; (e) 2-level DWT of AD brain; (f) 2-level DWPT of AD brain.}
\end{frame}
\section{íÏÒÆÏÌÏÇÉÞÅÓËÉÅ ÏÐÅÒÁÃÉÉ}
\begin{frame}{íÏÒÆÏÌÏÇÉÞÅÓËÉÅ ÏÐÅÒÁÃÉÉ}
\only<1>{
\begin{block}{ïÓÎÏ×ÎÙÅ ÐÏÎÑÔÉÑ}
\begin{itemize}
\item ðÕÓÔØ $A$~-- ÎÅËÏÔÏÒÁÑ ÏÂÌÁÓÔØ ÎÁ ÂÉÎÁÒÎÏÍ ÉÚÏÂÒÁÖÅÎÉÉ, $a=(a_1,a_2)\in A$~-- ÔÏÞËÁ, ÅÊ
ÐÒÉÎÁÄÌÅÖÁÝÁÑ; ÉÎÔÅÎÓÉ×ÎÏÓÔØ × ÔÏÞËÅ $a$ ÏÂÏÚÎÁÞÉÍ ËÁË $v(a)$.
\item {\bf ïÂßÅËÔ}: $A=\{a\;|\;v(a)==1, \forall a \text{ 4/8-connected}\}$.
\item {\bf æÏÎ}: $B=\{b\;|\;b==0 \cup b\text{ not connected}\}$.
\item {\bf óÄ×ÉÇ}: $A_x=\{c\;|\;c=a+x, \forall a\in A\}$.
\item {\bf ïÔÒÁÖÅÎÉÅ}: $\hat A=\{c \;|\; c=-a, \forall a\in A\}$.
\item {\bf äÏÐÏÌÎÅÎÉÅ}: $A^C=\{c \;|\; c\notin A\}$.
\item {\bf óÕÍÍÁ}: $A+B=\{c \;|\; c\in (A\cup B)\}=A\cup B$.
\item {\bf òÁÚÎÏÓÔØ}: $A-B=\{c \;|\; c\in A, c\notin B\}=A \cap B^C$.
\end{itemize}
\end{block}}
\only<2>{\img[0.8]{baseimop}}
\end{frame}
\begin{frame}{üÒÏÚÉÑ (ÕÓÅÞÅÎÉÅ)}
\begin{block}{}
$$A\ominus B=\{x \;|\; B_x\subseteq A\}\text{ ÉÌÉ }
A\ominus B=\{x \;|\; B_x\cap A^C=\varnothing\}\text{ ÉÌÉ }
A\ominus B=\bigcap_{b\in B}A_b
$$
\end{block}
\only<1>{\img[0.7]{erosion}}
\only<2>{\img[0.7]{erosion01}}
\only<3>{\img{erosion02}}
\end{frame}
\begin{frame}{äÉÌÁÔÁÃÉÑ (ÎÁÒÁÝÉ×ÁÎÉÅ)}
\begin{block}{}
$$A\oplus B = \{x \;|\; \hat B_z\cap A \ne\varnothing\} \text{ ÉÌÉ }
A\oplus B = \bigcup_{b\in B}A_b=\bigcup_{a\in A}B_a
$$
\end{block}
\only<1>{\img[0.7]{dilation}}
\only<2>{\img{dilation01}}
\end{frame}
\begin{frame}{ó×ÏÊÓÔ×Á}
\begin{block}{}
\centerline{ëÏÍÍÕÔÁÔÉ×ÎÏÓÔØ:}
$$A\oplus B = B\oplus A\qquad A\ominus B \ne B\ominus A$$
\centerline{áÓÓÏÃÉÁÔÉ×ÎÏÓÔØ:}
$$A\oplus (B\cup C)=(A\oplus B)\cup(A\oplus C)\qquad A\ominus (B\cup C)=(A\ominus B)\cap(A\ominus
C)$$
$$(A\ominus B)\ominus C = A\ominus(B\oplus C)$$
\centerline{ä×ÏÊÓÔ×ÅÎÎÏÓÔØ:}
$$(A\ominus B)^C=A^C\oplus\hat B\qquad
(A\oplus B)^C =A^C\ominus\hat B$$
\end{block}
\end{frame}
\begin{frame}{ïÔËÒÙÔÉÅ (ÒÁÚÍÙËÁÎÉÅ)}
\begin{block}{}$$A\circ B = (A\ominus B)\oplus B$$\end{block}
\img{opening01}
\end{frame}
\begin{frame}{úÁËÒÙÔÉÅ (ÚÁÍÙËÁÎÉÅ)}
\begin{block}{}
$$A\bullet B = (A\oplus B)\ominus B$$
\img{closing01}
\end{block}
\end{frame}
\begin{frame}{}
\img{morph01}
\end{frame}
\begin{frame}{<<Top hat>> É <<Bottom hat>>}
\begin{block}{}
$$A\hat\circ B = A\backslash (A\circ B), \qquad
A\hat\bullet B = (A\bullet B)\backslash A$$
\end{block}
\only<1>{\img[0.8]{tophat}}
\only<2>{\img[0.8]{bottomhat}}
\end{frame}
\begin{frame}{Hit-and-miss}
\only<1,2>{\begin{block}{}$$A \circledast B = (A\ominus B_1)\cap(A^C\ominus B_2),\quad\text{ÇÄÅ}$$
$$B_1=\{b \;|\; b\in B, b=1\},\; B_2=\{\tilde b \;|\; b\in B, b=0\}$$
\end{block}}
\only<1>{\img[0.8]{hitamiss01}}
\only<2>{\img[0.8]{hitamiss02}}
\only<3>{\img[0.8]{hit_and_miss_skel}$$S=A\backslash \bigcup_{i}(A\circledast B_i)$$}
\only<4>{\img{skel01}}
\only<5>{\img{skel02}}
\end{frame}
\section{óÅÇÍÅÎÔÁÃÉÑ ÉÚÏÂÒÁÖÅÎÉÊ}
\begin{frame}{óÅÇÍÅÎÔÁÃÉÑ ÉÚÏÂÒÁÖÅÎÉÊ}
\begin{block}{ïÓÎÏ×Ù}
\begin{itemize}
\item óÅÇÍÅÎÔÁÃÉÑ: $\cup_{i=1}^n R_i \,\cup\, \cup_{i=1}^n B_i= R$, ×ÓÅ $R_i$ Ó×ÑÚÎÙÅ, $B_i$~--
ÆÏÎ.
\item $R_i\cap R_j=\varnothing$ $\forall i\ne j$.
\item $Q(R_i) = 1$, $i=\overline{1,n}$, $Q$~-- ÌÏÇÉÞÅÓËÉÊ ÐÒÅÄÉËÁÔ.
\item $Q(R_i\cup R_j)=0$ $\forall i\ne j$.
\end{itemize}
\end{block}
\begin{block}{ðÒÏÉÚ×ÏÄÎÙÅ}
\begin{itemize}
\item $\partder{f}{x}\equiv f'_x=f(x+1)-f(x)$
\item $\dpartder{f}{x}\equiv f''_x = f'_x(x+1)-f'_x(x)=f(x+2)+f(x)-2f(x+1)$
\item $\nabla^2f(x,y) = f''_x(x,y)+f''_y(x,y) \Arr$
$\nabla^2 f(x,y)=f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x,y-1)-4f(x,y)$
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{ðÒÉÍÅÒÙ (M13)}
\only<1>{ïÒÉÇÉÎÁÌ:\\
\smimg[0.5]{origFull}\;\smimg[0.5]{origCrop}
}
\only<2>{âÉÎÁÒÉÚÁÃÉÑ ÐÏ ÐÏÓÔÏÑÎÎÏÍÕ ÐÏÒÏÇÕ:\\
\smimg[0.5]{binFull}\;\smimg[0.5]{binCrop}
}
\only<3>{þÅÔÙÒÅÈËÒÁÔÎÁÑ ÜÒÏÚÉÑ:\\
\smimg[0.5]{erosion4Full}\;\smimg[0.5]{erosion4Crop}
}
\only<4>{þÅÔÙÒÅÈËÒÁÔÎÏÅ ÒÁÚÍÙËÁÎÉÅ:\\
\smimg[0.5]{opening4Full}\;\smimg[0.5]{opening4Crop}
}
\only<5>{ïÒÉÇÉÎÁÌ Ó ÐÒÅÄÙÄÕÝÅÊ ÍÁÓËÏÊ:\\
\smimg[0.5]{objE4D4Full}\;\smimg[0.5]{objE4D4Crop}
}
\only<6>{ä×ÁÄÃÁÔÉÐÑÔÉËÒÁÔÎÁÑ ÜÒÏÚÉÑ:\\
\smimg[0.5]{erosion25Full}\;\smimg[0.5]{erosion25Crop}
}
\only<7>{íÁÓËÁ (25 ÜÒÏÚÉÊ É 200 ÄÉÌÁÔÁÃÉÊ):\\
\smimg[0.5]{opE25D200Full}\;\smimg[0.5]{opE25D200Crop}
}
\only<8>{ïÒÉÇÉÎÁÌ Ó ÐÒÅÄÙÄÕÝÅÊ ÍÁÓËÏÊ:\\
\smimg[0.5]{objE25D200Full}\;\smimg[0.5]{objE25D200Crop}
}
\only<9>{÷ÙÄÅÌÅÎÎÙÅ ÏÂßÅËÔÙ (ÒÁÚÍÙËÁÎÉÅ È4 É È10; 237 É 9 ÏÂßÅËÔÏ× × ÐÏÌÅ ÓÏÏÔ×ÅÔÓÔ×ÅÎÎÏ):\\
\smimg[0.5]{count4}\;\smimg[0.5]{count10}
}
\end{frame}
\begin{frame}{ïÂÎÁÒÕÖÅÎÉÅ ÌÉÎÉÊ, ÔÏÞÅË É ÐÅÒÅÐÁÄÏ×}
\only<1>{\centerline{ôÏÞËÉ --- ÌÁÐÌÁÓÉÁÎ, ÌÉÎÉÉ, ÐÅÒÅÐÁÄÙ --- ÇÒÁÄÉÅÎÔ}\img[0.8]{prewitt}
\centerline{Prewitt}}
\only<2>{\img[0.7]{compmask}}
\only<3>{\begin{block}{çÒÁÄÉÅÎÔ}
$$\nabla \vec f = (f'_x, f'_y) = \bigl(f(x+1,y)-f(x,y), f(x,y+1)-f(x,y)\bigr)$$
\end{block}\img[0.8]{imgrad}}
\end{frame}
\begin{frame}{÷ÙÄÅÌÅÎÉÅ ÇÒÁÎÉÃ}
\only<1>{\begin{block}{íÏÒÆÏÌÏÇÉÞÅÓËÉÊ ÇÒÁÄÉÅÎÔ}
$$\beta(A)=A\backslash(A\ominus B)\qquad
\beta'(A)=(A\oplus B)\backslash A\qquad
\beta''(A)=(A\oplus B)\backslash(A\ominus B)$$
\end{block}\img{morphgrad}}
\only<2>{\begin{block}{Canny}
\begin{enumerate}
\item òÁÚÍÙ×ÁÎÉÅ ÉÚÏÂÒÁÖÅÎÉÑ ÇÁÕÓÓÏ×ÙÍ ÆÉÌØÔÒÏÍ.
\item ÷ÙÞÉÓÌÅÎÉÅ ÞÁÓÔÎÙÈ ÐÒÏÉÚ×ÏÄÎÙÈ $I'_x$ É $I'_y$ (òÏÂÅÒÔÓ, óÏÂÅÌØ, ðÒÀÉÔÔ, LoG, DoG\dots) É
ËÏÍÐÏÎÅÎÔÏ× ÇÒÁÄÉÅÎÔÁ: $M=\sqrt{(I'_x)^2+(I'_y)^2}$, $\theta=\arctg\frc{I'_y}{I'_x}$.
\item ðÏÒÏÇÏ×ÏÅ ÐÒÅÏÂÒÁÚÏ×ÁÎÉÅ $M$: $M_T = M$, ÅÓÌÉ $M>T$, ÉÎÁÞÅ $M_T=0$.
\item ïÂÎÕÌÅÎÉÅ ÎÅÍÁËÓÉÍÁÌØÎÙÈ $M_T$ ÐÏ ÎÁÐÒÁ×ÌÅÎÉÀ $\theta$ (ÐÏ Ä×ÕÍ ÓÏÓÅÄÑÍ).
\item ðÏÌÕÞÅÎÉÅ Ä×ÕÈ ÐÏÒÏÇÏ×ÙÈ ÚÎÁÞÅÎÉÊ: $M_{T_1}$ É $M_{T_2}$; $T_1<T_2$.
\item úÁÐÏÌÎÅÎÉÅ ÐÒÏÐÕÓËÏ× × $M_{T_2}$ ÐÏ ÓÏÓÅÄÎÉÍ ÚÎÁÞÅÎÉÑÍ × $M_{T_1}$.
\end{enumerate}
\end{block}}
\only<3>{\img[0.6]{canny01}\centerline{ïÂÒÁÚÅÃ}}
\only<4>{\img[0.6]{canny02}\centerline{Sobel}}
\only<5>{\img[0.6]{canny03}\centerline{Prewitt}}
\only<6>{\img[0.6]{canny04}\centerline{DoG}}
\only<7>{\img[0.6]{canny05}\centerline{Canny, $\sigma=5$, $T_1=0.8$, $T_2=0.95$}}
\end{frame}
\begin{frame}{ïÂÎÁÒÕÖÅÎÉÅ ÐÒÑÍÙÈ É ÏËÒÕÖÎÏÓÔÅÊ}
\only<1>{\begin{block}{ðÒÅÏÂÒÁÚÏ×ÁÎÉÅ èÁÆÁ}
$$r = x\cos\theta + y\sin\theta$$
\end{block}
\img[0.5]{R_theta_line}}
\only<2>{\img{htdiagram}}
\only<3>{\img[0.7]{htexample}}
\only<4>{\img{htEx}}
\only<5>{\includegraphics[width=0.48\textwidth]{h01}\hfil
\includegraphics[width=0.48\textwidth]{h02}}
\only<6>{\begin{block}{ðÒÅÏÂÒÁÚÏ×ÁÎÉÅ èÁÆÁ ÄÌÑ ÐÏÉÓËÁ ÏËÒÕÖÎÏÓÔÅÊ}
$$(x-x_c)^2+(y-y_c)^2=r^2$$
\end{block}\img{htcirc01}}
\only<7>{\img{htcirc02}\centerline{ôÒÅÈÍÅÒÎÙÊ ÍÁÓÓÉ× × ÓÌÕÞÁÅ ÎÅÉÚ×ÅÓÔÎÙÈ ÃÅÎÔÒÁ É ÒÁÄÉÕÓÁ.}}
\end{frame}
\begin{frame}{ðÒÉÍÅÒ: ÄÁÔÞÉË ×ÏÌÎÏ×ÏÇÏ ÆÒÏÎÔÁ}
\img{Hough_ex}
\end{frame}
\begin{frame}{óÅÇÍÅÎÔÁÃÉÑ ÐÏ ÍÏÒÆÏÌÏÇÉÞÅÓËÉÍ ×ÏÄÏÒÁÚÄÅÌÁÍ}
\only<1>{\begin{block}{}
âÉÎÁÒÎÙÅ ÉÚÏÂÒÁÖÅÎÉÑ: ÉÔÅÒÁÔÉ×ÎÙÅ ÄÉÌÁÔÁÃÉÉ Ó ÐÏÓÔÒÏÅÎÉÅÍ ÐÅÒÅÇÏÒÏÄÏË × ÍÅÓÔÁÈ
ÏÂÒÁÚÏ×Á×ÛÉÈÓÑ ÐÅÒÅÓÅÞÅÎÉÊ.
\end{block}}
\only<2,3>{\begin{block}{}âÉÎÁÒÎÙÅ ÉÚÏÂÒÁÖÅÎÉÑ: ÐÒÅÏÂÒÁÚÏ×ÁÎÉÑ ÒÁÓÓÔÏÑÎÉÊ\end{block}}
\only<1>{\img[0.5]{watershed}}
\only<2>{\img[0.4]{wat01}}
\only<3>{\img[0.75]{wat02}}
\only<4>{\begin{block}{}
÷ ÏÂÝÅÍ ÓÌÕÞÁÅ: ÒÁÚÌÉÞÎÙÅ ÁÌÇÏÒÉÔÍÙ ÚÁÐÏÌÎÅÎÉÑ.
\end{block}
\img[0.7]{watershed01}}
\end{frame}
\begin{frame}{óÐÁÓÉÂÏ ÚÁ ×ÎÉÍÁÎÉÅ!}
\centering
\begin{minipage}{5cm}
\begin{block}{mailto}
eddy@sao.ru\\
edward.emelianoff@gmail.com
\end{block}\end{minipage}
\begin{block}{ìÉÔÅÒÁÔÕÒÁ}
\begin{itemize}
\item Gonzalez \& Woods. Digital Image Processing, 3rd edition. 2008.
\item Gonzalez \& Woods \& Eddins. Digital Image Processing Using MATLAB, 2nd edition. 2009.
\item \url{http://www.imageprocessingplace.com/root_files_V3/tutorials.htm}
\end{itemize}
\end{block}
\end{frame}
\end{document}