mirror of
https://github.com/eddyem/lectures.git
synced 2025-12-06 10:45:09 +03:00
424 lines
16 KiB
TeX
424 lines
16 KiB
TeX
\documentclass[10pt,pdf,hyperref={unicode},aspectratio=169]{beamer}
|
||
\hypersetup{pdfpagemode=FullScreen}
|
||
\usepackage{lect}
|
||
|
||
\title{òÅÇÉÓÔÒÁÃÉÑ ÉÚÌÕÞÅÎÉÑ É ÉÎÆÏÒÍÁÃÉÑ, × ÎÅÍ ÓÏÄÅÒÖÁÝÁÑÓÑ}
|
||
\date{8~ÁÐÒÅÌÑ 2022~ÇÏÄÁ}
|
||
|
||
\begin{document}
|
||
% ôÉÔÕÌ
|
||
\bgroup\setbeamercolor{normal text}{bg=black}
|
||
\begin{frame}
|
||
\maketitle
|
||
\end{frame}\egroup\logo{}
|
||
% óÏÄÅÒÖÁÎÉÅ
|
||
\begin{frame}
|
||
\tableofcontents
|
||
\end{frame}
|
||
|
||
\section{<<äÅËÏÍÐÏÚÉÃÉÑ>> ÉÚÌÕÞÅÎÉÑ: 3D, 4D ÄÁÎÎÙÅ}
|
||
\begin{frame}{<<äÅËÏÍÐÏÚÉÃÉÑ>> ÉÚÌÕÞÅÎÉÑ: 3D, 4D ÄÁÎÎÙÅ}
|
||
\only<1>{\cols{\col{0.3}\begin{block}{}
|
||
éÚÌÕÞÅÎÉÅ: 4 ÓÔÅÐÅÎÉ Ó×ÏÂÏÄÙ (ËÏÏÒÄÉÎÁÔÙ ÎÁ ÉÚÏÂÒÁÖÅÎÉÉ, ÞÁÓÔÏÔÁ, ×ÒÅÍÑ).
|
||
3D data cubes (FITS-files): ÓÌÁÊÓÙ ÐÏ ×ÒÅÍÅÎÉ (ÂÙÓÔÒÏÐÅÒÅÍÅÎÎÙÅ ÏÂßÅËÔÙ, lucky images,
|
||
speckle\dots) ÉÌÉ ÐÏ ÞÁÓÔÏÔÅ (VPHG, IFP, ÓÒÅÄÎÅ- É ÛÉÒÏËÏÐÏÌÏÓÎÙÅ ÆÉÌØÔÒÙ).
|
||
\end{block}\col{0.65}\img{lucky_stack}}}
|
||
\only<2>{\img{speckleflow}}
|
||
\only<3>{\cols{\col{0.37}\vspace*{-1em}\img[0.85]{IFPstack}\col{0.57}\img{VPHGstack}}}
|
||
\end{frame}
|
||
|
||
\section{äÉÓÐÅÒÇÉÒÕÀÝÉÅ ÓÉÓÔÅÍÙ}
|
||
\begin{frame}{äÉÓÐÅÒÇÉÒÕÀÝÉÅ ÓÉÓÔÅÍÙ: ÐÒÉÚÍÙ}
|
||
\vspace*{-1em}
|
||
\only<1>{\img[0.55]{Fraunhofer_spectroscope}\vspace*{-0.8em}
|
||
1814, ÓÐÅËÔÒÏÓËÏÐ êÏÚÅÆÁ ÆÏÎ æÒÁÕÎÇÏÆÅÒÁ}
|
||
\only<2>{\img[0.75]{prism_spectrometer}}
|
||
\only<3>{\img[0.7]{prism_spectrometer_sch}}
|
||
\only<4>{\img[0.85]{prism_monochr}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{}
|
||
\begin{block}{}
|
||
1872, ÐÅÒ×ÙÊ ÓÐÅËÔÒ ÷ÅÇÉ ÎÁ ÆÏÔÏÐÌÁÓÔÉÎËÅ. ó 1918 ÐÏ 1924~Ç. ×ÙÛÅÌ ËÁÔÁÌÏÇ HD × ÞÅÓÔØ äÒÜÐÅÒÁ
|
||
(ÉÚÎÁÞÁÌØÎÏ 225300 Ú×ÅÚÄ, üÄ×ÁÒÄ ðÉËÅÒÉÎÇ ÓÏÔÏ×ÁÒÉÝÉ, ÎÁÂÌÀÄÅÎÉÑ × ÇÁÒ×ÁÒÄÓËÏÊ ÏÂÓÅÒ×ÁÔÏÒÉÉ Ó
|
||
ÏÂßÅËÔÉ×ÎÏÊ ÐÒÉÚÍÏÊ).
|
||
\end{block}
|
||
\img{Drapers_spectra}
|
||
\end{frame}
|
||
|
||
\begin{frame}{âÅÓÝÅÌÅ×ÙÅ ÓÐÅËÔÒÙ}\vspace*{-0.8em}
|
||
\only<1>{îÉËÏÌÁÓ íÅÊÏÌ, 1930-Å.
|
||
\img[0.94]{slitless_schematic}}
|
||
\only<2>{\img[0.88]{slitless}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{äÉÆÒÁËÃÉÏÎÎÁÑ ÒÅÛÅÔËÁ}\vspace*{-0.8em}
|
||
\only<1>{\img[0.6]{Fraunhofer_grating}\vspace*{-0.8em}îÉÔÑÎÁÑ ÒÅÛÅÔËÁ æÒÁÕÎÇÏÆÅÒÁ}
|
||
\only<2>{\img[0.75]{Diffraction_Grating_Equation}}
|
||
\only<3>{\img[0.67]{diffraction_image006}}
|
||
\only<4>{\img[0.85]{Large_Diffraction_grating}}
|
||
\only<5>{\img[0.8]{Czerny-turner_monochr}íÏÎÏÈÒÏÍÁÔÏÒ þÅÒÎÉ--ô\"ÅÒÎÅÒÁ}
|
||
\only<6>{\img[0.52]{Fastie-Ebert_Monochromator}\vspace*{-0.8em} íÏÎÏÈÒÏÍÁÔÏÒ æÁÓÔÉ--üÂÅÒÔÁ}
|
||
\end{frame}
|
||
|
||
\begin{frame}{äÌÉÎÎÏÝÅÌÅ×ÙÅ ÓÐÅËÔÒÙ}\vspace*{-0.8em}
|
||
\only<1>{\img[0.4]{slit_spectr}}
|
||
\only<2>{\img[0.6]{gmoslongslit_galaxy}}
|
||
\only<3>{\img{gmoslongslit_galext}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{Integral field spectrograph}\vspace*{-0.7em}
|
||
\only<1>{\img[0.8]{integral_field_spectr_designs}}
|
||
\only<2>{\img[0.6]{Hectospec_focal_plane}\vspace*{-0.8em}
|
||
Hectospec --- ÓÌÏÖÎÙÊ ÓÐÅËÔÒÏÇÒÁÆ 6.5-Í ÔÅÌÅÓËÏÐÁ MMT}
|
||
\only<3>{\img[0.65]{ifs_data_cube}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{üÛÅÌÌÅ--ÓÐÅËÔÒÏÇÒÁÆ}\vspace*{-0.7em}
|
||
\only<1>{\cols{\col{0.47}\begin{block}{}ëÏÎÆÉÇÕÒÁÃÉÑ ìÉÔÔÒÏ×Á ÓÉÎÉÍ.\\
|
||
õÇÏÌ ÂÌÅÓËÁ $\theta_B>45\degr$.\end{block}
|
||
\col{0.47}\begin{block}{}$$\theta _{B}=\arcsin\frac{m\lambda}{2d}.$$\end{block}}
|
||
\img[0.52]{Blazed_grating}}
|
||
\only<2>{\img[0.7]{Echelle_dispersion}}
|
||
\only<3>{\img[0.7]{echelle_inst}}
|
||
\only<4>{\img[0.7]{echelle_spect}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{çÒÉÚÍÁ}\vspace*{-0.7em}
|
||
\only<1>{\img[0.7]{grism_light}}
|
||
\only<2>{\img{FOCAS_grisms}\vspace*{-0.7em}
|
||
îÁÂÏÒ ÇÒÉÚÍ The Faint Object Camera and Spectrograph (FOCAS Subaru).}
|
||
\only<3>{\img[0.65]{FOCAS_subaru}}
|
||
\only<4>{\img[0.67]{Grism1}}
|
||
\only<5>{\img[0.67]{Grism2}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{VPHG}\vspace*{-0.7em}
|
||
\only<1>{\img[0.57]{VPHG_ex}}
|
||
\only<2>{\cols{\col{0.27}\begin{block}{}
|
||
$$Q=\frac{2\pi\lambda d}{n_g\Lambda^2\cos\alpha}.$$
|
||
$$\frac{d\theta}{d\lambda}=\frac{m}{\Lambda\cos\theta}.$$
|
||
The phase grating is called "thin" for Q < 1 and "thick" for Q > 10.
|
||
\end{block}\col{0.7}\img{VPGfig2}}}
|
||
\only<3>{\img[0.6]{VPHG}}
|
||
\only<4>{\img[0.7]{VP_HolographicGratings_eff_vs_wavelength3}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{éÎÔÅÒÆÅÒÏÍÅÔÒ æÁÂÒÉ--ðÅÒÏ}\vspace*{-0.8em}
|
||
\only<1>{\img[0.6]{ifp_theor}}
|
||
\only<2>{\cols{\col{0.65}\begin{block}{}ëÕÂÙ ÄÁÎÎÙÈ ÐÒÉ ÓËÁÎÉÒÏ×ÁÎÉÉ éæð.
|
||
á.÷.~íÏÉÓÅÅ×\footnote{\url{https://www.sao.ru/hq/lsfvo/devices/scorpio/scorpio.html}}.
|
||
\end{block}\vspace*{-0.8em}
|
||
\img[0.7]{ifp_theor2}\col{0.25}\img{IFP_datacube}}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{ëÁÌÉÂÒÏ×ËÉ}\vspace*{-0.8em}
|
||
\only<1>{\blueimg{Integr_sphere_principle}}
|
||
\only<2>{\img[0.45]{Commercial_Integrating_Sphere}}
|
||
\only<3>{\img[0.75]{ar_ne600}}
|
||
\only<4>{Th/Ar\vspace*{-1.5em}\img[0.5]{thorium}}
|
||
\end{frame}
|
||
|
||
\section{ðÏÌÑÒÉÚÁÃÉÑ É ÁÎÁÌÉÚÁÔÏÒÙ ÐÏÌÑÒÉÚÁÃÉÉ}
|
||
\begin{blueframe}{ðÏÌÑÒÉÚÁÃÉÑ}\vspace*{-0.8em}
|
||
\begin{block}{}$I=k_{a}I_{0}\cos^{2}\varphi$. 1810, üÔØÅÎ ìÕÉ íÁÌÀÓ "--- ËÏÌÉÞÅÓÔ×ÅÎÎÁÑ
|
||
ËÏÒÐÕÓËÕÌÑÒÎÁÑ ÔÅÏÒÉÑ ÐÏÌÑÒÉÚÁÃÉÉ Ó×ÅÔÁ. 1821, æÒÅÎÅÌØ "--- ×ÏÌÎÏ×ÁÑ ÔÅÏÒÉÑ ÐÏÌÑÒÉÚÁÃÉÉ.
|
||
\end{block}
|
||
\only<1>{\img{Electromagnetic_wave}}
|
||
\only<2>{\img[0.6]{Malus_law-ru}}
|
||
\end{blueframe}
|
||
|
||
\begin{frame}{ðÁÒÁÍÅÔÒÙ óÔÏËÓÁ}
|
||
\only<1>{\vspace*{-0.7em}\begin{block}{}
|
||
\cols{\col{0.35}$$\begin{aligned}
|
||
S_0&=I=E_{a}^2+E_{b}^2\\
|
||
S_1&=Q=I\cos2\psi\cos2\chi\\
|
||
S_2&=U=I\sin2\psi\cos2\chi\\
|
||
S_3&=V=I\sin2\chi
|
||
\end{aligned}$$\col{0.65}
|
||
$E_a$, $E_b$~-- ÂÏÌØÛÁÑ É ÍÁÌÁÑ ÐÏÌÕÏÓÉ ÐÏÌÑÒÉÚÁÃÉÏÎÎÏÇÏ ÜÌÌÉÐÓÁ, $\psi$~-- ÕÇÏÌ ÐÏ×ÏÒÏÔÁ
|
||
ÐÏÌÑÒÉÚÁÃÉÏÎÎÏÇÏ ÜÌÌÉÐÓÁ ÏÔÎÏÓÉÔÅÌØÎÏ ÐÒÏÉÚ×ÏÌØÎÏÊ ÌÁÂÏÒÁÔÏÒÎÏÊ ÓÉÓÔÅÍÙ ËÏÏÒÄÉÎÁÔ, $\chi$~--
|
||
×ÓÐÏÍÏÇÁÔÅÌØÎÙÊ ÕÇÏÌ, ÏÐÒÅÄÅÌÑÅÍÙÊ ÉÚ ÕÓÌÏ×ÉÑ $\tg\chi=E_a/E_b$.}\end{block}
|
||
\vspace*{-0.7em}\cols{\col{0.5}\begin{block}{}
|
||
ôÒÉ ÎÅÚÁ×ÉÓÉÍÙÈ ÐÁÒÁÍÅÔÒÁ: $I^2=Q^2+U^2+V^2$.
|
||
ðÕÓÔØ $E_1$ É $E_2$~-- ÏÒÔÏÇÏÎÁÌØÎÙÅ ÐÒÏÅËÃÉÉ~$\vec{E}$, $\delta$~-- ÒÁÚÎÏÓÔØ ÆÁÚ × ÐÒÏÅËÃÉÑÈ.
|
||
ôÏÇÄÁ:
|
||
$$\begin{aligned}
|
||
S_0&=I=E_1^2 + E_2^2\\
|
||
S_1&=Q=E_1^2 - E_2^2\\
|
||
S_2&=U=2 E_1 E_2\cos\delta\\
|
||
S_3&=V=2 E_1 E_2\sin\delta
|
||
\end{aligned}$$
|
||
\end{block}
|
||
\col{0.4}\img{Polarization_ellipse}}}
|
||
\only<2>{\begin{block}{}
|
||
÷ÒÁÝÁÅÍ ÐÏÌÑÒÉÚÁÔÏÒ ÎÁ 0, 60 É 120 ÇÒÁÄÕÓÏ×, ×ÙÞÉÓÌÑÅÍ ÐÁÒÁÍÅÔÒÙ óÔÏËÓÁ.\\
|
||
ä×Å ×ÏÌÎÙ, ÌÉÎÅÊÎÏ ÐÏÌÑÒÉÚÏ×ÁÎÎÙÅ ÐÏÄ ÐÒÑÍÙÍ ÕÇÌÏÍ ÄÒÕÇ Ë ÄÒÕÇÕ, ÎÅ ÉÎÔÅÒÆÅÒÉÒÕÀÔ!
|
||
\end{block}
|
||
\img{stokes_calc}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{õÇÏÌ âÒÀÓÔÅÒÁ}\vspace*{-0.8em}
|
||
\only<1>{$$\tg\theta_B=n,\quad\text{ÕÇÏÌ ÐÁÄÅÎÉÑ $\theta_B$}$$
|
||
\blueimg[0.6]{Brewster_window}}
|
||
\only<2>{\img[0.9]{brewster_polarizer_small}}
|
||
\end{frame}
|
||
|
||
\begin{blueframe}{ä×ÏÊÎÏÅ ÌÕÞÅÐÒÅÌÏÍÌÅÎÉÅ}\vspace*{-0.8em}
|
||
\only<1>{\begin{block}{}
|
||
1969, òÁÓÍÕÓ âÁÒÔÏÌÉÎ, ËÒÉÓÔÁÌÌ ÉÓÌÁÎÄÓËÏÇÏ ÛÐÁÔÁ. $\Delta n=n_{e}-n_{o}$.
|
||
\end{block}
|
||
\img[0.45]{Positively_birefringent_material}}
|
||
\only<2>{\cols{\col{0.67}\img{LCD_layers}\col{0.3}
|
||
\begin{block}{}
|
||
1,5~-- ÐÏÌÑÒÉÚÁÔÏÒÙ,\\
|
||
2,4~-- ÐÒÏÚÒÁÞÎÙÅ ÜÌÅËÔÒÏÄÙ,\\
|
||
3~-- öë (ÏÐÔÉÞÅÓËÉ ÁËÔÉ×ÎÏÅ ×ÅÝÅÓÔ×Ï),\\
|
||
6~-- ÏÔÒÁÖÁÔÅÌØ ÉÌÉ ÐÏÄÓ×ÅÔËÁ.
|
||
\end{block}}}
|
||
\only<3>{\img{Nicol_prism}\black{ðÒÉÚÍÁ îÉËÏÌÑ}}
|
||
\only<4>{\img[0.7]{Wollaston-prism}\black{ðÒÉÚÍÁ ÷ÏÌÌÁÓÔÏÎÁ}}
|
||
\end{blueframe}
|
||
|
||
\begin{frame}{÷ÏÌÎÏ×ÙÅ ÐÌÁÓÔÉÎËÉ}\vspace*{-0.8em}
|
||
\only<1>{\img[0.65]{Waveplate}\vspace*{-0.8em}
|
||
ðÏÌÕ×ÏÌÎÏ×ÁÑ ÐÌÁÓÔÉÎËÁ}
|
||
\only<2>{\blueimg{CircularPolarization}\vspace*{-0.8em}
|
||
þÅÔ×ÅÒÔØ×ÏÌÎÏ×ÁÑ ÐÌÁÓÔÉÎËÁ}
|
||
\end{frame}
|
||
|
||
\begin{frame}{ðÏÌÑÒÉÚÁÃÉÑ × ÁÓÔÒÏÆÉÚÉËÅ}
|
||
\begin{block}{}
|
||
ëÏÇÅÒÅÎÔÎÙÅ ÉÓÔÏÞÎÉËÉ (ÇÉÄÒÏËÓÉÌØÎÙÅ ÉÌÉ ÍÅÔÁÎÏÌÏ×ÙÅ ÍÁÚÅÒÙ).\\
|
||
òÁÓÓÅÑÎÉÅ ÎÁ ÍÅÖÚ×ÅÚÄÎÏÊ ÐÙÌÉ.\\
|
||
÷ÒÁÝÅÎÉÅ ÐÌÏÓËÏÓÔÉ ÐÏÌÑÒÉÚÁÃÉÉ × ÍÁÇÎÉÔÎÙÈ ÐÏÌÑÈ (ÜÆÆÅËÔ æÁÒÁÄÅÑ).\\
|
||
ðÏÌÑÒÉÚÁÃÉÑ CMB "--- ÉÚÕÞÅÎÉÅ ÆÉÚÉËÉ ÒÁÎÎÅÊ ÷ÓÅÌÅÎÎÏÊ.\\
|
||
ðÏÌÑÒÉÚÁÃÉÑ ÓÉÎÈÒÏÔÒÏÎÎÏÇÏ ÉÚÌÕÞÅÎÉÑ.\\
|
||
÷ÏÚÍÏÖÎÏ, ÁÓÔÒÏÎÏÍÉÞÅÓËÉÅ ÉÓÔÏÞÎÉËÉ ÐÏ×ÌÉÑÌÉ ÎÁ ÓÅÌÅËÃÉÀ ÈÉÒÁÌØÎÏÓÔÉ ÂÅÌËÏ× É ÐÒÏÞÉÈ ÏÒÇÁÎÉÞÅÓËÉÈ
|
||
ÍÏÌÅËÕÌ ÎÁ úÅÍÌÅ.
|
||
\end{block}
|
||
\end{frame}
|
||
|
||
\section{íÅÔÏÄÙ ÁÓÔÒÏÆÉÚÉËÉ}
|
||
\begin{frame}{áÓÔÒÏÆÉÚÉËÁ}
|
||
\begin{defin}\textbf{áÓÔÒÏÆÉÚÉËÁ} "--- ÒÁÚÄÅÌ ÁÓÔÒÏÎÏÍÉÉ, ÔÅÓÎÏ ÐÅÒÅÐÌÅÔÅÎÎÙÊ Ó ÈÉÍÉÅÊ É ÆÉÚÉËÏÊ.
|
||
<<It seeks to ascertain the nature of the heavenly bodies, rather than their positions or motions
|
||
in space~--- what they are, rather than where they are>> (1897, äÖÅÊÍÓ ëÉÌÅÒ).
|
||
\vspace{1em}
|
||
|
||
ïÓÎÏ×ÏÐÏÌÏÖÎÉËÉ "--- ÷ÉÌØÑÍ èÁÊÄ ÷ÏÌÌÁÓÔÏÎ É êÏÚÅÆ ÆÏÎ æÒÁÕÎÇÏÆÅÒ.
|
||
|
||
óÁÍ ÔÅÒÍÉÎ <<ÁÓÔÒÏÆÉÚÉËÁ>> ÐÒÅÄÌÏÖÅÎ éÏÇÁÎÎÏÍ ëÁÒÌÏÍ æÒÉÄÒÉÈÏÍ ã\"eÌÌØÎÅÒÏÍ (ÉÚ×ÅÓÔÅÎ ÐÏ ÔÏÞÎÏÊ
|
||
ÆÏÔÏÍÅÔÒÉÉ) × 1865~Ç.
|
||
|
||
áÓÔÒÏÆÉÚÉËÁ ÄÅÌÉÔÓÑ ÎÁ ÎÁÂÌÀÄÁÔÅÌØÎÕÀ É ÔÅÏÒÅÔÉÞÅÓËÕÀ, ÎÁÈÏÄÑÝÉÅÓÑ × ÔÅÓÎÏÊ ×ÚÁÉÍÏÓ×ÑÚÉ.
|
||
\end{defin}
|
||
\end{frame}
|
||
|
||
|
||
\section{æÏÔÏÍÅÔÒÉÑ}
|
||
\begin{frame}{æÏÔÏÍÅÔÒÉÑ}\vspace*{-0.7em}
|
||
\begin{block}{æÏÔÏÍÅÔÒ ã\"ÅÌÌØÎÅÒÁ}
|
||
1861~Ç. "--- ÐÅÒ×ÙÊ ÆÏÔÏÍÅÔÒ Ó ÜÔÁÌÏÎÎÙÍ ÉÓÔÏÞÎÉËÏÍ. çÁÚÏ×ÁÑ ÇÏÒÅÌËÁ, ÐÒÉÚÍÙ ÷ÏÌÌÁÓÔÏÎÁ,
|
||
ÐÌÏÓËÏÐÁÒÁÌÌÅÌØÎÁÑ ÐÌÁÓÔÉÎËÁ.
|
||
\end{block}\vspace*{-0.7em}
|
||
\img{zollner_photometer}
|
||
\end{frame}
|
||
|
||
\begin{frame}
|
||
\frametitle{ïÂÌÁÓÔØ ÐÒÉÍÅÎÅÎÉÑ ÆÏÔÏÍÅÔÒÉÉ}\vspace*{-2em}
|
||
\begin{columns}
|
||
\column{0.35\textwidth}
|
||
\begin{block}{}
|
||
\begin{itemize}
|
||
\item ïÐÒÅÄÅÌÅÎÉÅ Ó×ÅÔÉÍÏÓÔÉ ÏÂßÅËÔÁ ÉÌÉ ÒÁÓÓÔÏÑÎÉÑ ÄÏ ÎÅÇÏ.
|
||
\item áÓÔÒÏÍÅÔÒÉÞÅÓËÉÅ ÚÁÄÁÞÉ.
|
||
\item ëÌÁÓÓÉÆÉËÁÃÉÑ ÏÂßÅËÔÁ (É ÐÒÅÄÐÏÌÏÖÅÎÉÅ Ï ÅÇÏ Ó×ÏÊÓÔ×ÁÈ).
|
||
\item<2-> ëÏÓÍÏÌÏÇÉÑ: ÍÁÓÓÙ É Ä×ÉÖÅÎÉÑ ÇÁÌÁËÔÉË.
|
||
\item<3-> ïÐÒÅÄÅÌÅÎÉÅ ÐÁÒÁÍÅÔÒÏ× ÐÅÒÅÍÅÎÎÙÈ ÏÂßÅËÔÏ×.
|
||
\item<3-> ðÏÉÓË ËÒÕÐÎÙÈ ÜËÚÏÐÌÁÎÅÔ.
|
||
\item<4-> éÚÕÞÅÎÉÅ Ó×ÅÒÈÎÏ×ÙÈ.
|
||
\end{itemize}
|
||
\end{block}
|
||
\column{0.62\textwidth}
|
||
\begin{pict}
|
||
\only<1>{\includegraphics[width=0.65\columnwidth]{HRDiagram}}
|
||
\only<2>{\includegraphics[width=0.85\columnwidth]{hubble}}
|
||
\only<3>{\includegraphics[width=\columnwidth]{exoplanet}}
|
||
\only<4>{\includegraphics[width=\columnwidth]{supernova}}
|
||
\end{pict}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\begin{frame}{æÏÔÏÍÅÔÒÉÞÅÓËÉÅ ÄÉÁÐÁÚÏÎÙ}\vspace*{-0.8em}
|
||
\only<1>{\img[0.85]{Filter-optics-1}}
|
||
\only<2>{\begin{block}{}óÔÒ\"ÅÍÇÒÅÎ, 1960-Å ÇÇ.: ÛÉÒÏËÏÐÏÌÏÓÎÙÅ; ÓÒÅÄÎÅÐÏÌÏÓÎÙÅ É ÕÚËÏÐÏÌÏÓÎÙÅ ÆÏÔÏÍÅÔÒÉÞÅÓËÉÅ ÓÉÓÔÅÍÙ.
|
||
ëÒÉÔÅÒÉÊ "--- ÐÏÌÕÛÉÒÉÎÁ: ÛÉÒÏËÏÐÏÌÏÓÎÙÅ $>300\Ang$, ÕÚËÏÐÏÌÏÓÎÙÅ $<100\Ang$.
|
||
\end{block}\img[0.75]{interf_filterIR}}
|
||
\only<3>{\img[0.75]{bands}}
|
||
\end{frame}
|
||
|
||
\section{óÐÅËÔÒÏÓËÏÐÉÑ}
|
||
\begin{frame}{ïÂÌÁÓÔØ ÐÒÉÍÅÎÅÎÉÑ ÓÐÅËÔÒÏÓËÏÐÉÉ}\vspace*{-0.8em}
|
||
\begin{columns}
|
||
\column{0.4\textwidth}
|
||
\begin{block}{}
|
||
\begin{itemize}
|
||
\item üË×É×ÁÌÅÎÔÎÙÅ ÛÉÒÉÎÙ: ÒÁÓÓÔÏÑÎÉÅ ÄÏ Ú×ÅÚÄ, ÉÈ ×ÏÚÒÁÓÔ,
|
||
ÓËÏÒÏÓÔØ ÐÏÔÅÒÉ ÍÁÓÓ É ÍÎÏÇÉÅ ÄÒÕÇÉÅ ÐÁÒÁÍÅÔÒÙ.
|
||
\item óÐÅËÔÒÏÐÏÌÑÒÉÍÅÔÒÉÑ.
|
||
\item<2-> ïÐÒÅÄÅÌÅÎÉÅ ÈÉÍÉÞÅÓËÏÇÏ ÓÏÓÔÁ×Á Ú×ÅÚÄ.
|
||
\item<3-> óÔÒÏÇÁÑ ÓÐÅËÔÒÁÌØÎÁÑ ËÌÁÓÓÉÆÉËÁÃÉÑ.
|
||
\item<4-> ïÐÒÅÄÅÌÅÎÉÅ ÓËÏÒÏÓÔÉ Ä×ÉÖÅÎÉÑ ÏÂßÅËÔÏ×.
|
||
\item<5-> ëÏÓÍÏÌÏÇÉÑ.
|
||
\end{itemize}
|
||
\end{block}
|
||
|
||
\column{0.57\textwidth}
|
||
\begin{pict}
|
||
\only<1>{\includegraphics[width=\columnwidth]{equiv_width}}
|
||
\only<2>{\includegraphics[width=\columnwidth]{solar_spectra}}
|
||
\only<3>{\includegraphics[width=0.7\columnwidth]{SpectralLines}}
|
||
\only<4>{\includegraphics[width=\columnwidth]{doppler}}
|
||
\only<5>{\includegraphics[width=\columnwidth]{galaxy_doppler}}
|
||
\end{pict}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\section{õÞÅÔ ÛÕÍÏ× ÄÅÔÅËÔÏÒÏ×}
|
||
\begin{frame}{õÞÅÔ ÛÕÍÏ× ÄÅÔÅËÔÏÒÏ×}\vspace*{-0.8em}
|
||
\only<1>{\begin{block}{}
|
||
çÌÕÂÏËÏÅ ÏÈÌÁÖÄÅÎÉÅ ÄÌÑ ÓÎÉÖÅÎÉÑ ÔÅÍÎÏ×ÏÇÏ ÔÏËÁ.
|
||
\end{block}
|
||
\img[0.55]{signaltonoisefigure2}}
|
||
\only<2>{\begin{block}{}ðÏÐÉËÓÅÌØÎÁÑ ÎÅÏÄÎÏÒÏÄÎÏÓÔØ, ×ÉÎØÅÔÉÒÏ×ÁÎÉÅ, ÐÙÌØ "---
|
||
ËÁÌÉÂÒÏ×ËÁ ÎÁ <<ÐÌÏÓËÏÅ ÐÏÌÅ>>.\\
|
||
\textbf{äÒÏÂÏ×ÏÊ ÛÕÍ} $N_s=\sqrt{S}$ ÎÁÉÂÏÌÅÅ ÓÕÝÅÓÔ×ÅÎÅÎ ÐÒÉ ÍÁÌÙÈ ÉÎÔÅÎÓÉ×ÎÏÓÔÑÈ, ÌÉÂÏ Õ×ÅÌÉÞÉÔØ
|
||
ÜËÓÐÏÚÉÃÉÀ, ÌÉÂÏ ÓÕÍÍÉÒÏ×ÁÔØ ËÁÄÒÙ. ûÕÍ ÓÞÉÔÙ×ÁÎÉÑ (ÓÕÍÍÉÒÏ×ÁÔØ ËÁÄÒÙ).\\
|
||
$$SNR=PQ_et/\sqrt{(P+B)Q_et+Dt+N_R^2}$$
|
||
$P$~-- ÐÏÔÏË (ÆÏÔÏÎÏ× ÎÁ ÐÉËÓÅÌØ × ÓÅËÕÎÄÕ), $Q_e$~-- Ë×ÁÎÔÏ×ÁÑ ÜÆÆÅËÔÉ×ÎÏÓÔØ, $t$~-- ×ÒÅÍÑ ÜËÓÐÏÚÉÃÉÉ,
|
||
$B$~-- ÆÏÎ, $D$~-- ÔÅÍÎÏ×ÏÊ ÔÏË, $N_r$~-- ÛÕÍ ÓÞÉÔÙ×ÁÎÉÑ.
|
||
\end{block}
|
||
\img[0.9]{signaltonoisefigure1}}
|
||
\only<3>{\begin{block}{}
|
||
ûÕÍ ÓÂÒÏÓÁ $N_{reset}=\sqrt{kTC}/q$, $T$~-- ÔÅÍÐÅÒÁÔÕÒÁ (ë), $C$~-- ÅÍËÏÓÔØ ÑÞÅÊËÉ (æ),
|
||
$q$~-- ÎÁËÏÐÌÅÎÎÙÊ ÚÁÒÑÄ (ëÌ).\\
|
||
âÅÌÙÊ ÛÕÍ $N_{white}=\sqrt{4kT\nu R_{out}}\cdot A_{amp}/S_{amp}$,
|
||
$\nu$~-- ÞÁÓÔÏÔÁ ÓÞÉÔÙ×ÁÎÉÑ (çÃ), $R_{out}$~-- ×ÙÈÏÄÎÏÅ ÓÏÐÒÏÔÉ×ÌÅÎÉÅ ÕÓÉÌÉÔÅÌÑ (ïÍ),
|
||
$S$~-- ÞÕ×ÓÔ×ÉÔÅÌØÎÏÓÔØ ÕÓÉÌÉÔÅÌÑ (÷/ÜÌÅËÔÒÏÎ), $A$~-- ËÏÜÆÆÉÃÉÅÎÔ ÕÓÉÌÅÎÉÑ.\\
|
||
ôÅÍÎÏ×ÏÊ ÔÏË: $D = 2.5\cdot10^{15} S I_d T^{1.5} \exp{-E_g/(2kT)}$,
|
||
$S$~-- ÐÌÏÝÁÄØ ÐÉËÓÅÌÑ (ÓÍ$^2$), $I_d$~-- ÉÚÍÅÒÅÎÎÙÊ ÎÁ 300\,ë ÔÅÍÎÏ×ÏÊ ÔÏË (Îá/ÓÍ$^2$),
|
||
$E_g$~-- ÛÉÒÉÎÁ ÚÁÐÒÅÝÅÎÎÏÊ ÚÏÎÙ (Ü÷).
|
||
\end{block}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{ëÏÎ×ÅÊÅÒ ÏÂÒÁÂÏÔËÉ ÄÁÎÎÙÈ}
|
||
\begin{block}{}
|
||
\begin{enumerate}
|
||
\item ðÏÌÕÞÅÎÉÅ ÓÎÉÍËÁ ÏÂßÅËÔÁ ($O$) É ÎÅÓËÏÌØËÉÈ bias, dark É flat ($b_i$, $d_i$, $f_i$).
|
||
\item íÅÄÉÁÎÎÏÅ ÕÓÒÅÄÎÅÎÉÅ: $X=\med(x)$ \Arr $B$, $D$, $F$.
|
||
\item åÓÌÉ ÜËÓÐÏÚÉÃÉÉ $D$ É $O$ ÒÁÚÌÉÞÁÀÔÓÑ, ÐÏÌÕÞÁÅÍ <<master dark>>: $D_m=(D-B)/t_{exp}$.
|
||
\item õÄÁÌÅÎÉÅ ÛÕÍÏ×: $O_{clean}=O-D$, $F_{clean}=F-D$ (ÉÌÉ $X-B-D_m\cdot t_{exp}$).
|
||
\item îÏÒÍÉÒÏ×ÁÎÉÅ $F_{clean}$: $F_{norm}=F_{clean}/F_{clean,max}$.
|
||
\item ëÏÒÒÅËÃÉÑ ÎÁ <<ÐÌÏÓËÏÅ ÐÏÌÅ>>: $O_{corr} = O_{clean}/F_{clean}$.
|
||
\end{enumerate}
|
||
äÌÑ ÓÐÅËÔÒÏÆÏÔÏÍÅÔÒÉÉ ÐÏÓÌÅ ÜËÓÔÒÁËÃÉÉ ÓÐÅËÔÒÁ ÎÅÏÂÈÏÄÉÍÏ ÔÁËÖÅ ×ÙÐÏÌÎÉÔØ ÎÏÒÍÉÒÏ×ËÕ ÎÁ <<ÐÌÏÓËÉÊ ÓÐÅËÔÒ>>.
|
||
\end{block}
|
||
\end{frame}
|
||
|
||
% ÎÁÛ Ó ôÉÍÕÒÏÍ ÏÔÞÅÔ
|
||
\begin{frame}{ïÐÒÅÄÅÌÅÎÉÅ ÈÁÒÁËÔÅÒÉÓÔÉË ÎÏ×ÏÊ ðúó}\vspace*{-0.8em}
|
||
\begin{block}{}
|
||
\only<1>{\textbf{üÌÅËÔÒÏÎÎÙÊ ÎÏÌØ} (bias). óÎÉÍËÉ bias ÐÏÚ×ÏÌÑÀÔ ÏÐÒÅÄÅÌÉÔØ ÕÒÏ×ÅÎØ ÛÕÍÁ ÓÞÉÔÙ×ÁÎÉÑ
|
||
(RON). äÌÑ ÕÍÅÎØÛÅÎÉÑ ×ÌÉÑÎÉÑ ÄÅÆÅËÔÏ×, ÉÓÐÏÌØÚÕÅÍ ÒÁÚÎÏÓÔÉ:
|
||
$I_{diff}=I_1-I_2.$ ôÏÇÄÁ $\sigma{RON}=\sigma{I}/\sqrt{2}$.
|
||
}
|
||
\only<2>{\textbf{ìÉÎÅÊÎÏÓÔØ} ÐÏÌÕÞÁÅÔÓÑ ÉÚ ÌÉÎÅÊÎÏÊ ÁÐÐÒÏËÓÉÍÁÃÉÉ ÚÁ×ÉÓÉÍÏÓÔÉ $I=\alpha t$ ÐÒÉ ÐÏÌÕÞÅÎÉÉ
|
||
<<ÐÌÏÓËÉÈ>> ÓÎÉÍËÏ× Ó ÒÁÚÎÏÊ ÜËÓÐÏÚÉÃÉÅÊ.
|
||
}
|
||
\only<3>{\textbf{ëÏÜÆÆÉÃÉÅÎÔ ÕÓÉÌÅÎÉÑ} (gain) ÏÐÒÅÄÅÌÑÅÔ, ÓËÏÌØËÏ ADU ÂÕÄÅÔ ÐÏÌÕÞÅÎÏ ÎÁ ÏÄÉÎ ÆÏÔÏÜÌÅËÔÒÏÎ.
|
||
óÔÒÏÉÍ ÚÁ×ÉÓÉÍÏÓÔØ $\sigma^2_I(\mean{I})$ (ÄÉÓÐÅÒÓÉÑ ÉÎÔÅÎÓÉ×ÎÏÓÔÉ × ËÁÄÒÅ ÏÔ ÅÅ ÓÒÅÄÎÅÇÏ ÚÎÁÞÅÎÉÑ).
|
||
ïÄÎÁËÏ, ÄÅÆÅËÔÙ ðúó ×ÎÅÓÕÔ ÎÅÔÏÞÎÏÓÔØ, ÎÁÄÅÖÎÅÊ ×ÙÞÉÓÌÑÔØ ÒÁÚÎÏÓÔÉ ÉÚÏÂÒÁÖÅÎÉÊ.\\
|
||
ðÕÓÔØ $I$ É $\sigma^2$~-- ÓÒÅÄÎÉÊ ÓÉÇÎÁÌ × ÐÉËÓÅÌÅ (ÐÏÓÌÅ ×ÙÞÉÔÁÎÉÑ <<ÔÅÍÎÏ×ÙÈ>>) É ÅÇÏ ÄÉÓÐÅÒÓÉÑ,
|
||
$R^2$, $\sigma^2_{ph}$ É $\sigma^2_{ff}=kI$~-- ÄÉÓÐÅÒÓÉÉ ÛÕÍÏ× ÓÞÉÔÙ×ÁÎÉÑ, ÄÒÏÂÏ×ÏÇÏ (ÆÏÔÏÎÎÏÇÏ) ÛÕÍÁ É
|
||
ÎÅÏÄÎÏÒÏÄÎÏÓÔØ ÞÕ×ÓÔ×ÉÔÅÌØÎÏÓÔÉ ÐÉËÓÅÌÅÊ ðúó. ôÏÇÄÁ ÏÂÝÉÊ ÛÕÍ:
|
||
$$\sigma^2=R^2+\sigma^2_{ph}+\sigma^2_{ff}=R^2+I+k^2I^2.$$
|
||
$$\sigma^2/g^2=R^2/g^2+I/g+k^2I^2/g^2\quad\text{ÉÌÉ}\quad
|
||
\sigma^2=R^2+gI+k^2I^2.$$
|
||
äÌÑ ÒÁÚÎÏÓÔÉ ÉÚÏÂÒÁÖÅÎÉÊ <<ÉÓÐÒÁ×ÌÅÎÎÙÊ ÛÕÍ>> $\sigma^2=\dfrac{\Sum I_{diff}^2}{2(N-1)}$. ÷ÓÅ
|
||
×ÙÞÉÓÌÅÎÉÑ ÐÒÏ×ÏÄÉÍ × ÎÅÓËÏÌØËÉÈ ÕÞÁÓÔËÁÈ ÉÚÏÂÒÁÖÅÎÉÑ (ÎÅ ÐÏ ×ÓÅÍÕ ËÁÄÒÕ) ÄÌÑ ÕÓÒÅÄÎÅÎÉÑ ÒÅÚÕÌØÔÁÔÏ×.\\
|
||
ìÉÎÅÊÎÁÑ ÉÎÔÅÒÐÏÌÑÃÉÑ ÚÁ×ÉÓÉÍÏÓÔÉ ÉÎÔÅÎÓÉ×ÎÏÓÔÉ ÏÔ ÛÕÍÁ ÄÁÅÔ ÒÅÚÕÌØÔÉÒÕÀÝÉÊ $g$.
|
||
}
|
||
\only<4>{\textbf{ôÅÍÎÏ×ÏÊ ÔÏË} ÎÅÏÂÈÏÄÉÍÏ ÉÓÓÌÅÄÏ×ÁÔØ ÎÁ ÚÁ×ÉÓÉÍÏÓÔØ ÏÔ ×ÒÅÍÅÎÉ ÜËÓÐÏÚÉÃÉÉ É
|
||
ÔÅÍÐÅÒÁÔÕÒÙ.}
|
||
\only<5>{\textbf{ë×ÁÎÔÏ×ÁÑ ÜÆÆÅËÔÉ×ÎÏÓÔØ} ÏÐÒÅÄÅÌÑÅÔÓÑ × ÌÁÂÏÒÁÔÏÒÎÙÈ ÕÓÌÏ×ÉÑÈ: ÍÏÎÏÈÒÏÍÁÔÏÒ É
|
||
ËÁÌÉÂÒÏ×ÁÎÎÙÊ Ó×ÅÔÏÐÒÉÅÍÎÉË.}
|
||
\end{block}\vspace*{-0.8em}
|
||
\only<1>{\img[0.5]{bias_t}}
|
||
\only<2>{\img[0.5]{ccd_lin}}
|
||
\only<4>{\img[0.55]{dark_cur}}
|
||
\only<5>{\img[0.55]{apoqe}}
|
||
\end{frame}
|
||
|
||
\section{ëÏÄÉÒÏ×ÁÎÉÅ É ÈÒÁÎÅÎÉÅ ÉÎÆÏÒÍÁÃÉÉ}
|
||
\begin{frame}{ëÏÄÉÒÏ×ÁÎÉÅ É ÈÒÁÎÅÎÉÅ ÉÎÆÏÒÍÁÃÉÉ}
|
||
\begin{block}{FITS-ÆÏÒÍÁÔ}
|
||
FITS (ÁÎÇÌ. Flexible Image Transport System) "--- ÃÉÆÒÏ×ÏÊ ÆÏÒÍÁÔ ÆÁÊÌÏ×, ÉÓÐÏÌØÚÕÅÍÙÊ × ÎÁÕËÅ ÄÌÑ
|
||
ÈÒÁÎÅÎÉÑ, ÐÅÒÅÄÁÞÉ É ÒÅÄÁËÔÉÒÏ×ÁÎÉÑ ÉÚÏÂÒÁÖÅÎÉÊ É ÉÈ ÍÅÔÁÄÁÎÎÙÈ (ÜÌÅËÔÒÏÎÎÙÈ ÔÁÂÌÉÃ).\\
|
||
íÅÔÁÄÁÎÎÙÅ ÉÚÏÂÒÁÖÅÎÉÑ ÈÒÁÎÑÔÓÑ × ÕÄÏÂÏÞÉÔÁÅÍÏÍ ÚÁÇÏÌÏ×ËÅ ÆÏÒÍÁÔÁ ASCII.\\
|
||
ëÁÖÄÙÊ ÆÁÊÌ FITS ÉÍÅÅÔ ÏÄÉÎ ÉÌÉ ÎÅÓËÏÌØËÏ ÚÁÇÏÌÏ×ËÏ×, ÓÏÄÅÒÖÁÝÉÈ ASCII-ÓÔÒÏËÉ (ÆÉËÓÉÒÏ×ÁÎÎÏÊ ÄÌÉÎÙ × 80
|
||
ÓÉÍ×ÏÌÏ×) ÉÚ ÐÁÒ ËÌÀÞ\slash ÚÎÁÞÅÎÉÅ, ÐÅÒÅÍÅÖÁÀÝÉÈÓÑ ÍÅÖÄÕ ÂÌÏËÁÍÉ ÄÁÎÎÙÈ.
|
||
\end{block}\tiny
|
||
\begin{tabular}{llllll}
|
||
(blank) &CROTAn &EQUINOX &NAXISn &TBCOLn &TUNITn\\
|
||
AUTHOR &CRPIXn &EXTEND &OBJECT &TDIMn &TZEROn\\
|
||
BITPIX &CRVALn &EXTLEVEL &OBSERVER &TDISPn &XTENSION\\
|
||
BLANK &CTYPEn &EXTNAME &ORIGIN &TELESCOP&\\
|
||
BLOCKED &DATAMAX &EXTVER &PCOUNT &TFIELDS&\\
|
||
BSCALE &DATAMIN &GCOUNT &PSCALn &TFORMn&\\
|
||
BUNIT &DATE &GROUPS &PTYPEn &THEAP&\\
|
||
BZERO &DATE-OBS &HISTORY &PZEROn &TNULLn&\\
|
||
CDELTn &END &INSTRUME &REFERENC &TSCALn&\\
|
||
COMMENT &EPOCH &NAXIS &SIMPLE &TTYPEn&\\
|
||
\end{tabular}
|
||
\end{frame}
|
||
|
||
\begin{frame}{WCS-ÐÒÉ×ÑÚËÁ}\vspace*{-1em}
|
||
\only<1>{\begin{block}{ðÁÒÁÍÅÔÒÙ WCS}
|
||
\begin{description}
|
||
\item[CRVALi] ÚÎÁÞÅÎÉÅ ÍÉÒÏ×ÙÈ ËÏÏÒÄÉÎÁÔ ÏÐÏÒÎÏÇÏ ÐÉËÓÅÌÑ
|
||
\item[CRPIXi] ËÏÏÒÄÉÎÁÔÙ ÏÐÏÒÎÏÇÏ ÐÉËÓÅÌÑ ÎÁ ÉÚÏÂÒÁÖÅÎÉÉ
|
||
\item[CDELTi] ÉÎËÒÅÍÅÎÔ ËÏÏÒÄÉÎÁÔ
|
||
\item[CTYPEi] ÔÉÐ ÍÁÔÒÉÃÙ ÐÒÅÏÂÒÁÚÏ×ÁÎÉÑ
|
||
\item[CROTAi] ÕÇÏÌ ÐÏ×ÏÒÏÔÁ ÓÉÓÔÅÍ ËÏÏÒÄÉÎÁÔ
|
||
\item[PCij] ÎÅÍÁÓÛÔÁÂÉÒÏ×ÁÎÎÁÑ ÍÁÔÒÉÃÁ ÐÒÅÏÂÒÁÚÏ×ÁÎÉÊ
|
||
\item[CDij] PC Ó ÍÁÓÛÔÁÂÏÍ
|
||
\item[Qi] $=\sum_{j=1}^N CD_{ij} (x_j - CRPIX_j)
|
||
= \sum_{j=1}^N CDELT_j \cdot PC_{ij} (x_j - CRPIX_j)$.
|
||
\end{description}
|
||
\end{block}
|
||
}
|
||
\only<2>{\img[0.55]{out}}
|
||
\only<3>{\img[0.55]{out_cat}}
|
||
\end{frame}
|
||
|
||
|
||
\if0
|
||
\begin{frame}{}
|
||
\begin{block}{}
|
||
\end{block}
|
||
\only<1>{\img{}}
|
||
\cols{\col{0.5}
|
||
\col{0.5}}
|
||
\end{frame}
|
||
\fi
|
||
\begin{frame}{óÐÁÓÉÂÏ ÚÁ ×ÎÉÍÁÎÉÅ!}
|
||
\centering
|
||
\begin{minipage}{5cm}
|
||
\begin{block}{mailto}
|
||
eddy@sao.ru\\
|
||
edward.emelianoff@gmail.com
|
||
\end{block}\end{minipage}
|
||
\end{frame}
|
||
\end{document}
|