lectures/Komp_obr/07-iproc_3.tex

288 lines
9.4 KiB
TeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[10pt,pdf,hyperref={unicode}]{beamer}
\hypersetup{pdfpagemode=FullScreen}
\usepackage{lect}
\title[ëÏÍÐØÀÔÅÒÎÁÑ ÏÂÒÁÂÏÔËÁ. ìÅËÃÉÑ 7.3.]{ëÏÍÐØÀÔÅÒÎÁÑ ÏÂÒÁÂÏÔËÁ ÒÅÚÕÌØÔÁÔÏ× ÉÚÍÅÒÅÎÉÊ}
\subtitle{ìÅËÃÉÑ 7.3. ïÂÒÁÂÏÔËÁ ÁÓÔÒÏÎÏÍÉÞÅÓËÉÈ ÉÚÏÂÒÁÖÅÎÉÊ}
\date{5 ÁÐÒÅÌÑ 2021 ÇÏÄÁ}
\begin{document}
% ôÉÔÕÌ
\begin{frame}
\maketitle
\end{frame}
% óÏÄÅÒÖÁÎÉÅ
\begin{frame}
\tableofcontents
\end{frame}
\section{óÉÇÎÁÌ--ÛÕÍ}
\begin{blueframe}{}
\only<1>{
\begin{block}{SNR}
$$\SNR = \frac{N}{\sqrt{N}}= \sqrt{N},\qquad N=N_{star}+N_{sky}\quad\Arr$$
$$\SNR\approx\frac{N_{star}}{\sqrt{N_{star}+2N_{sky}}},\qquad N=t_{exp}\cdot R\quad\Arr$$
$$\SNR\approx\frac{R_{star}\sqrt{t_{exp}}}{\sqrt{R_{star}+2R_{sky}}}\quad\Arr\quad
\SNR\propto\sqrt{t_{exp}}$$
$$R=R_0\cdot S_{mirror}\propto D_{mirror}^2\quad\Arr\quad \SNR\propto D_{mirror}$$
$$N_{meas}\text{ ËÏÒÏÔËÉÈ ÜËÓÐÏÚÉÃÉÊ ×ÍÅÓÔÏ
ÏÄÎÏÊ:}\quad\sigma_{mean}=\frac{\sigma_{individ}}{\sqrt{N_{meas}}}\propto\frac{\sqrt{S}}{N_{meas}}$$
$$\SNR_{mean}=\frac{S/N_{meas}}{\sigma_{mean}}\propto\sqrt{S}=\SNR_{long}\quad\text{ÔÏÌØËÏ ÅÓÌÉ }
\sigma\approx\sigma_{phot}!!!$$
\end{block}
}
\only<2>{
\begin{block}{ëÏÒÒÅËÃÉÑ ÁÐÅÒÔÕÒÙ} % CCDPhotometryBook.pdf
ðÏÞÅÍÕ ÉÚÏÂÒÁÖÅÎÉÅ ÑÒËÏÊ Ú×ÅÚÄÙ ÛÉÒÅ: ÎÅÓÍÏÔÒÑ ÎÁ ÓÏ×ÅÒÛÅÎÎÏ ÏÄÉÎÁËÏ×ÕÀ PSF Õ ÏÂÅÉÈ Ú×ÅÚÄ, ÐÒÉ ÓÅÞÅÎÉÉ
ÏÄÉÎÁËÏ×ÙÍ ÐÏÒÏÇÏÍ ÑÒËÁÑ Ú×ÅÚÄÁ ×ÓÅÇÄÁ <<ÂÏÌØÛÅ>>. õ×ÅÌÉÞÅÎÉÅ ÁÐÅÒÔÕÒÙ \Arr Õ×ÅÌÉÞÅÎÉÅ ÛÕÍÏ×, ÎÅÏÂÈÏÄÉÍÏ
ÉÓÐÏÌØÚÏ×ÁÔØ ËÁË ÍÏÖÎÏ ÍÅÎØÛÕÀ ÁÐÅÒÔÕÒÕ.
$$\Delta_N^{bright} = m(N\cdot \FWHM) - m(1\cdot\FWHM)\quad\Arr\quad
m^{faint} = m(1\cdot\FWHM) + \Delta_N^{bright},$$
$m(x)$~-- Ú×ÅÚÄÎÁÑ ×ÅÌÉÞÉÎÁ ÎÁ ÁÐÅÒÔÕÒÅ~$x$.
\end{block}\vspace*{-1em}
\img[0.6]{fwhm}
}
\end{blueframe}
\section{äÅËÏÎ×ÏÌÀÃÉÑ}
\begin{frame}{äÅËÏÎ×ÏÌÀÃÉÑ}
\only<1>{
\begin{block}{}
$$I(x,y) = P(x,y)*O(x,y)+N(x,y),\quad\text{$P$~-- PSF}\quad\text{ÉÌÉ}$$
$$\FT{I}=\FT{O}\cdot\FT{P}+\FT{N}\quad\Arr\quad
\FT{O}=\frac{\FT{I} - \FT{N}}{\FT{P}}$$
$$\text{îÁÉÍÅÎØÛÉÅ Ë×ÁÄÒÁÔÙ:}\quad
\FT{O}=\frac{\FT{P}^*\FT{I}}{|\FT{P}|^2}$$
$$\text{òÅÇÕÌÑÒÉÚÁÃÉÑ ôÉÈÏÎÏ×Á, $\min(J_T)$ ($H$~-- HPF):}\quad
\quad J_T=||I-P*O|| - \lambda||H*O||,$$
$$\FT{O}=\frac{\FT{P}^*\FT{I}}{|\FT{P}|^2+\lambda|\FT{H}|^2}$$
\end{block}
}\only<2>{
\begin{block}{òÅÇÕÌÑÒÉÚÁÃÉÑ ÐÏ âÁÊÅÓÕ}
$$p(O|I)=\frac{p(I|O)\cdot p(O)}{p(I)}$$
$$\text{Maximum likelihood:}\quad \mathrm{ML}(O)=\max_O p(I|O)$$
$$\text{Maximum-a-posteriori solution:}\quad
\mathrm{MAP}(O)=\max_O p(I|O)\cdot p(O)$$
\end{block}
\begin{block}{}
\begin{itemize}
\item éÔÅÒÁÃÉÏÎÎÁÑ ÒÅÇÕÌÑÒÉÚÁÃÉÑ
\item ÷ÅÊ×ÌÅÔ-ÒÅÇÕÌÑÒÉÚÁÃÉÑ
\item \dots
\end{itemize}
\end{block}
}
\end{frame}
\begin{frame}{æÕÎËÃÉÑ ÒÁÓÓÅÑÎÉÑ ÔÏÞËÉ}
\only<1>{\img[0.6]{moffat}}
\only<2>{\begin{block}{}
\begin{itemize}
\item çÁÕÓÓ: $f(x) = f_0\exp\Bigl(\dfrac{-(x-x_0)^2}{2\sigma^2}\Bigr)$, $\FWHM\approx2.355\sigma$
\item íÏÆÆÁÔ: $f(x) = f_0\Bigl(1+\dfrac{(x-x_0)^2}{\alpha^2}\Bigr)^{-\beta}$,
$\FWHM\approx2\alpha\sqrt{2^{1/\beta}-1}$
\item æÒÉÄ: $\FT{f} \propto \exp\Bigl[-(bu)^{5/3}\Bigr]$,
$\FWHM\approx 2.921 b$ (íÏÆÆÁÔ Ó $\beta=4.765$, ÔÉÐÉÞÎÙÅ ÖÅ $\beta=2.5\cdots4.5$).
\end{itemize}
\end{block}
}
\end{frame}
\section{ïÂÎÁÒÕÖÅÎÉÅ}
\begin{frame}{ïÂÎÁÒÕÖÅÎÉÅ}
\begin{block}{ðÒÏÓÔÅÊÛÉÊ ÁÌÇÏÒÉÔÍ}
\begin{enumerate}
\item ÷ÙÞÉÓÌÅÎÉÅ É ×ÙÞÉÔÁÎÉÅ ÆÏÎÁ
\item ó×ÅÒÔËÁ Ó ÍÁÓËÏÊ É ÂÉÎÁÒÉÚÁÃÉÑ
\item ïÂÎÁÒÕÖÅÎÉÅ Ó×ÑÚÎÙÈ ÏÂÌÁÓÔÅÊ
\item õÔÏÞÎÅÎÉÅ ÆÏÎÁ, goto 1
\item ëÌÁÓÓÉÆÉËÁÃÉÑ, ÆÏÔÏÍÅÔÒÉÑ É Ô.Ð.
\end{enumerate}
\end{block}
\end{frame}
\begin{blueframe}{}
\img{objdet}
\end{blueframe}
\begin{blueframe}{éÚÏÆÏÔÙ}
\only<1>{\begin{block}{íÅÔÏÄ ÛÁÇÁÀÝÉÈ Ë×ÁÄÒÁÔÏ×}
âÉÎÁÒÉÚÕÅÍ ÉÚÏÂÒÁÖÅÎÉÅ ÐÏ ÚÁÄÁÎÎÏÍÕ ÐÏÒÏÇÕ. ðÏ ÓÏÓÅÄÑÍ ËÁÖÄÏÇÏ ÐÉËÓÅÌÑ ×ÙÞÉÓÌÑÅÍ ÂÉÔÏ×ÕÀ ÍÁÓËÕ
($0\div15$). ïÔ ÔÏÞËÉ $1\div14$ ÓÔÒÏÉÍ ÉÚÏÌÉÎÉÀ, ÓÏÏÔ×ÅÔÓÔ×ÅÎÎÏ ÍÅÎÑÑ ÚÎÁÞÅÎÉÑ × ÐÉËÓÅÌÑÈ ÍÁÓËÉ. ëÁÖÄÙÊ ÕÚÅÌ
ÉÚÏÌÉÎÉÉ~--- ÌÉÎÅÊÎÁÑ ÉÌÉ ÄÒÕÇÁÑ ÉÎÔÅÒÐÏÌÑÃÉÑ ÉÎÔÅÎÓÉ×ÎÏÓÔÉ × ÐÉËÓÅÌÑÈ ÏÒÉÇÉÎÁÌÁ.
\end{block}
\img[0.5]{isophotes}
}
\only<2>{\img{Marching_squares_algorithm}}
\end{blueframe}
\begin{frame}{WCS-ÐÒÉ×ÑÚËÁ}
\only<1>{
\img[0.6]{WCS_triangles}
\centerline{A.~P\'al, G.\'A.~Bakos. PASP {\bf 118}: 1474--1483, 2006. }}
\only<2>{
\img[0.65]{WCS_quad}
\centerline{\url{astrometry.net}}}
\only<3>{\begin{block}{}
\begin{itemize}
\item ðÏÌÏÖÅÎÉÅ ÎÅÓËÏÌØËÉÈ Ú×ÅÚÄ ÈÁÒÁËÔÅÒÉÚÕÅÔÓÑ ÐÁÒÁÍÅÔÒÏÍ, ÉÎ×ÁÒÉÁÎÔÎÙÍ Ë ÚÅÒËÁÌÉÒÏ×ÁÎÉÀ, ÍÁÓÛÔÁÂÉÒÏ×ÁÎÉÀ,
×ÒÁÝÅÎÉÀ É ÐÅÒÅÎÏÓÕ. õÓÔÏÊÞÉ×ÙÍ Ë ÛÕÍÕ.
\item ë×ÁÄÒÁÔÕ ABCD ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÞÅÔÙÒÅÈÍÅÒÎÙÊ ËÏÄ × ÏÔÎÏÓÉÔÅÌØÎÙÈ ËÏÏÒÄÉÎÁÔÁÈ ÔÏÞÅË C É D.
\item ðÒÏÂÌÅÍÁ ×ÙÒÏÖÄÅÎÉÑ: ÐÒÉ ÓÍÅÎÅ ÐÏÒÑÄËÁ A, B ÉÌÉ C, D ËÏÄ <<ÏÔÒÁÖÁÅÔÓÑ>>.
\item îÁ ÎÅÂÅ ÓÔÒÏÉÔÓÑ ÓÅÔËÁ Ó ÍÁÓÛÔÁÂÉÒÕÅÍÙÍ ÛÁÇÏÍ, ÐÏ ËÁÔÁÌÏÖÎÙÍ ÄÁÎÎÙÍ × ÅÅ ÑÞÅÊËÁÈ ÏÐÒÅÄÅÌÑÀÔÓÑ Ë×ÁÄÒÁÔÙ
Ó ÎÉÓÐÁÄÁÀÝÅÊ ÑÒËÏÓÔØÀ Ú×ÅÚÄ.
\item ðÏÌÕÞÅÎÎÙÊ ÎÁÂÏÒ ËÏÄÏ× ÐÏÚ×ÏÌÑÅÔ ÉÄÅÎÔÉÆÉÃÉÒÏ×ÁÔØ ÕÞÁÓÔËÉ ÎÅÂÁ ×ÐÌÏÔØ ÄÏ ÓÁÍÙÈ ÍÅÌËÉÈ ÍÁÓÛÔÁÂÏ× (ÎÕÖÎÙ
ÈÏÔÑ ÂÙ ÞÅÔÙÒÅ Ú×ÅÚÄÙ × ËÁÄÒÅ).
\item þÅÍ ÂÏÌØÛÅ Ú×ÅÚÄ ÎÁ ËÁÄÒÅ, ÔÅÍ ÎÁÄÅÖÎÅÊ ÂÕÄÅÔ ÉÄÅÎÔÉÆÉËÁÃÉÑ.
\end{itemize}
\end{block}
}
\end{frame}
\begin{blueframe}{ôÒÉÁÎÇÕÌÑÃÉÑ äÅÌÏÎÅ}
\img[0.6]{delaunay}
\end{blueframe}
\begin{blueframe}{äÉÁÇÒÁÍÍÙ ÷ÏÒÏÎÏÇÏ}
\only<1>{\img[0.6]{voronoi}}
\only<2>{\img[0.6]{delvor}}
\end{blueframe}
\begin{frame}{ó×ÏÊÓÔ×Á ÔÒÉÁÎÇÕÌÑÃÉÉ äÅÌÏÎÅ}
\begin{block}{}
\begin{itemize}
\item ôä ×ÚÁÉÍÎÏ ÏÄÎÏÚÎÁÞÎÏ ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÄÉÁÇÒÁÍÍÅ ÷ÏÒÏÎÏÇÏ ÄÌÑ ÔÏÇÏ ÖÅ ÍÎÏÖÅÓÔ×Á ÔÏÞÅË.
ëÁË ÓÌÅÄÓÔ×ÉÅ: ÅÓÌÉ ÎÉËÁËÉÅ ÞÅÔÙÒÅ ÔÏÞËÉ ÎÅ ÌÅÖÁÔ ÎÁ ÏÄÎÏÊ ÏËÒÕÖÎÏÓÔÉ, ôä ÅÄÉÎÓÔ×ÅÎÎÁ.
\item ôä ÍÁËÓÉÍÉÚÉÒÕÅÔ ÍÉÎÉÍÁÌØÎÙÊ ÕÇÏÌ ÓÒÅÄÉ ×ÓÅÈ ÕÇÌÏ× ×ÓÅÈ ÐÏÓÔÒÏÅÎÎÙÈ ÔÒÅÕÇÏÌØÎÉËÏ×, ÔÅÍ
ÓÁÍÙÍ ÉÚÂÅÇÁÀÔÓÑ <<ÔÏÎËÉÅ>> ÔÒÅÕÇÏÌØÎÉËÉ.
\item ôä ÍÁËÓÉÍÉÚÉÒÕÅÔ ÓÕÍÍÕ ÒÁÄÉÕÓÏ× ×ÐÉÓÁÎÎÙÈ ÏËÒÕÖÎÏÓÔÅÊ.
\item ôä ÍÉÎÉÍÉÚÉÒÕÅÔ ÍÁËÓÉÍÁÌØÎÙÊ ÒÁÄÉÕÓ ÍÉÎÉÍÁÌØÎÏÇÏ ÏÂßÅÍÌÀÝÅÇÏ ÛÁÒÁ.
\item ôä ÎÁ ÐÌÏÓËÏÓÔÉ ÏÂÌÁÄÁÅÔ ÍÉÎÉÍÁÌØÎÏÊ ÓÕÍÍÏÊ ÒÁÄÉÕÓÏ× ÏËÒÕÖÎÏÓÔÅÊ, ÏÐÉÓÁÎÎÙÈ ÏËÏÌÏ
ÔÒÅÕÇÏÌØÎÉËÏ×, ÓÒÅÄÉ ×ÓÅÈ ×ÏÚÍÏÖÎÙÈ ÔÒÉÁÎÇÕÌÑÃÉÊ.
\end{itemize}
\end{block}
\end{frame}
\begin{blueframe}{K-nearest}
\begin{columns}
\column{0.5\textwidth}
\begin{block}{}
ëÌÁÓÓÉÆÉËÁÃÉÑ ÏÂßÅËÔÁ ÐÏ $k$~ÂÌÉÖÁÊÛÉÍ ÓÏÓÅÄÑÍ. ÷ ÓÌÕÞÁÅ ÐÅÒ×ÏÊ ×ÙÂÏÒËÉ~--- ÔÒÅÕÇÏÌØÎÉË, × ÓÌÕÞÁÅ ×ÔÏÒÏÊ~---
Ë×ÁÄÒÁÔ.
$k$ ÍÏÖÅÔ ÂÙÔØ ÄÒÏÂÎÙÍ, ÅÓÌÉ ÐÒÉÍÅÎÑÔØ ×Ú×ÅÛÅÎÎÙÅ ÒÁÓÓÔÏÑÎÉÑ.
\end{block}
\column{0.5\textwidth}
\img{knearest}
\end{columns}
\end{blueframe}
\section{áÎÁÌÉÚ ÒÁÚÒÅÖÅÎÎÙÈ ÄÁÎÎÙÈ}
\begin{frame}{áÎÁÌÉÚ ÒÁÚÒÅÖÅÎÎÙÈ ÄÁÎÎÙÈ}
\only<1>{
\begin{block}{ëÏÒÒÅÌÑÃÉÑ}
$$C(\tau)=\frac{[a(t)-\aver{a}][b(t+\tau)-\aver{b}]}{\sigma_a\sigma_b}$$
$$\text{Unbinned: } U_{ij}=\frac{(a_i-\aver{a})(b_j-\aver{b})}{
\sqrt{(\sigma_a^2-e^2_a)(\sigma_b^2-e^2_b)}},\qquad \Delta t_{ij}=t_j-t_i\qquad$$
$$C(\tau)=\frac1{N_\tau}U_{ij,\tau},\qquad
\tau-\Delta\tau/2\le\Delta t_{ij}\le\tau+\Delta\tau/2$$
îÅ ÎÕÖÎÁ ÉÎÔÅÒÐÏÌÑÃÉÑ!
\end{block}
}\only<2>{
\img[0.8]{scatter_corr}\centerline{ðÕÎËÔÉÒ~--- ËÏÒÒÅÌÑÃÉÑ ÞÅÒÅÚ ÉÎÔÅÒÐÏÌÑÃÉÀ}}
\end{frame}
\begin{frame}{}
\only<1>{
\begin{block}{ðÅÒÉÏÄÏÇÒÁÍÍÁ ìÏÍÂÁ--óËÁÒÇÌÁ (Lomb--Scargle)}
$$P_{x}(\omega )={\frac {1}{2}}\left({\frac {\left[\sum _{j}X_{j}\cos \omega (t_{j}-\tau
)\right]^{2}}{\sum _{j}\cos ^{2}\omega (t_{j}-\tau )}}+{\frac {\left[\sum _{j}X_{j}\sin \omega
(t_{j}-\tau )\right]^{2}}{\sum _{j}\sin ^{2}\omega (t_{j}-\tau )}}\right)$$
$$\tg{2\omega \tau }={\frac {\sum _{j}\sin 2\omega t_{j}}{\sum _{j}\cos 2\omega t_{j}}}$$
\end{block}
\img{lombscargle}
}\only<2>{
\begin{block}{ðÒÅÏÂÒÁÚÏ×ÁÎÉÅ æÕÒØÅ}
$$ P_m=\Sum_{n=1}^N p_n\e^{-i\frac{2\pi}{N}mn}\quad\Arr\quad
P_m=\Sum_{n=1}^N p_n\e^{-i\frac{2\pi}{T}mt_n},\quad T=t_N-t_1$$
÷ octave: \tt{irsa\_dft(X,Y,freq)}:
$\displaystyle P(\nu)=\Sum_{n=1}^N p_n\e^{-i \nu_n\cdot t_n}$
\end{block}}
\only<3>{\img[0.8]{scat01}}
\only<4>{\img[0.8]{scatFFT}}
\only<3,4>{\centerline{$T=111.5\quad\Arr\quad \nu\approx0.00897$}}
\end{frame}
% \begin{frame}{}
% \only<1>{
% \begin{block}{}
% \end{block}
% }\only<2>{
% \img[0.8]{}
% }
% \end{frame}
\section{òÏÂÁÓÔÎÙÅ ÍÅÔÏÄÙ}
\begin{frame}{òÏÂÁÓÔÎÙÅ ÍÅÔÏÄÙ}
\begin{block}{}
òÏÂÁÓÔÎÁÑ ÎÁÄÅÖÎÏÓÔØ íîë~--- 0!
ðÒÏÓÔÅÊÛÁÑ ÒÏÂÁÓÔÎÁÑ ÏÃÅÎËÁ~--- ÍÅÄÉÁÎÁ (ÍÏÖÎÏ <<ÚÁÓÏÒÉÔØ>> ÄÏ 50\% ÄÁÎÎÙÈ!).
ïÃÅÎËÁ <<ÐÌÏÈÏÓÔÉ>>: $MAD=\med(x_i-\med(x))$.
çÒÕÐÐÉÒÏ×ËÁ ÄÁÎÎÙÈ É ÍÅÔÏÄ ÕÓÅÞÅÎÎÙÈ Ë×ÁÄÒÁÔÏ×.
íÅÔÏÄ ÎÁÉÍÅÎØÛÉÈ ÍÅÄÉÁÎ Ë×ÁÄÒÁÔÏ×: $\min\bigl(\med(x^2)\bigr)$.
ïÃÅÎËÁ ÄÉÓÐÅÒÓÉÉ: $\med(|x_i-\med(x)|)\approx0.67\sigma$.
M-, R-, S-, Q- ÏÃÅÎËÉ.
\end{block}
\end{frame}
\begin{frame}{ðÒÏÇÒÁÍÍÎÏÅ ÏÂÅÓÐÅÞÅÎÉÅ}
\begin{block}{\url{http://heasarc.gsfc.nasa.gov/docs/heasarc/astro-update/}}
\begin{itemize}
\item ASTROPY: A single core package for Astronomy in Python
\item Aladin: An interactive software sky atlas
\item CFITSIO: FITS file access subroutine library
\item GSL: GNU Scientific Library
\item IDLAUL: IDL Astronomical Users Library
\item IRAF: Image Reduction and Analysis Facility
\item MIDAS: Munich Image Data Analysis System
\item PyRAF: Run IRAF tasks in Python
\item SAOImage ds9: FITS image viewer and analyzer
\item SEXTRACTOR: Builds catalogue of objects from an astronomical image
\item WCSLIB: World Coordinate System software library
\item \dots~\url{http://tdc-www.harvard.edu/astro.software.html}
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{ìÉÔÅÒÁÔÕÒÁ}
\begin{itemize}
\item W. Romanishin. An Introduction to Astronomical Photometry Using CCDs.
\item Jean-Luc Starck and Fionn Murtagh. Handbook of Astronomical Data Analysis.
\item E.D.~Feigelson, G.J.~Babu. Modern Statistical Methods for Astronomy With R Applications.
\item R.A.~Edelson, J.H.~Krolik. The discrete correlation function --- A new method for analyzing
unevenly sampled variability data. ApJ, {\bf 333},1988, 646--659.
\end{itemize}
\end{frame}
\begin{frame}{óÐÁÓÉÂÏ ÚÁ ×ÎÉÍÁÎÉÅ!}
\centering
\begin{minipage}{5cm}
\begin{block}{mailto}
eddy@sao.ru\\
edward.emelianoff@gmail.com
\end{block}\end{minipage}
\end{frame}
\end{document}