lectures/Komp_obr/05-sistur.tex

408 lines
13 KiB
TeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[10pt,pdf,hyperref={unicode}]{beamer}
\hypersetup{pdfpagemode=FullScreen}
\usepackage{ed}
\usepackage{lect}
\title[ëÏÍÐØÀÔÅÒÎÁÑ ÏÂÒÁÂÏÔËÁ. ìÅËÃÉÑ 5.]{ëÏÍÐØÀÔÅÒÎÁÑ ÏÂÒÁÂÏÔËÁ ÒÅÚÕÌØÔÁÔÏ×
ÉÚÍÅÒÅÎÉÊ}
\subtitle{ìÅËÃÉÑ 5. óÉÓÔÅÍÙ ÕÒÁ×ÎÅÎÉÊ}
\date{22 ÍÁÒÔÁ 2021 ÇÏÄÁ}
\begin{document}
% ôÉÔÕÌ
\begin{frame}
\maketitle
\end{frame}
% óÏÄÅÒÖÁÎÉÅ
\begin{frame}
\tableofcontents
\end{frame}
\section{óÉÓÔÅÍÙ ÕÒÁ×ÎÅÎÉÊ}
\begin{frame}{óÉÓÔÅÍÙ ÕÒÁ×ÎÅÎÉÊ}
\begin{defin}
óÉÓÔÅÍÁ ÌÉÎÅÊÎÙÈ ÕÒÁ×ÎÅÎÉÊ ÄÌÑ $n$ ÎÅÉÚ×ÅÓÔÎÙÈ ÉÍÅÅÔ ×ÉÄ:
$$
\left\{
\begin{aligned}
a_{11}x_1+a_{12}x_2&+\cdots+a_{1n}x_n&=b_1;\\
a_{21}x_1+a_{22}x_2&+\cdots+a_{2n}x_n&=b_2;\\
\cdots\\
a_{n1}x_1+a_{n2}x_2&+\cdots+a_{nn}x_n&=b_n.
\end{aligned}
\right.
$$
\end{defin}
\begin{defin}
åÓÌÉ ÓÕÝÅÓÔ×ÕÅÔ ×ÅËÔÏÒ--ÓÔÏÌÂÅÃ~$\B x$, ÏÂÒÁÝÁÀÝÉÊ ×ÙÒÁÖÅÎÉÅ~$\B{Ax=b}$ × ÔÏÖÄÅÓÔ×Ï, ÇÏ×ÏÒÑÔ,
ÞÔÏ~$\B x$ Ñ×ÌÑÅÔÓÑ ÒÅÛÅÎÉÅÍ ÄÁÎÎÏÊ ÓÉÓÔÅÍÙ ÕÒÁ×ÎÅÎÉÊ.
$\mathrm{det}\,A\equiv |\B A|\ne0$.
\end{defin}
\end{frame}
\begin{frame}{íÅÔÏÄÙ ÒÅÛÅÎÉÊ}
\only<1>{\begin{block}{}
$\delta=\B{Ax-b}$.
ðÒÉÂÌÉÖÅÎÎÙÅ ÍÅÔÏÄÙ: $\mathrm{min}(\delta)$. ôÏÞÎÙÅ ÍÅÔÏÄÙ: $\delta=0$.\\
\end{block}
\begin{block}{íÁÔÒÉÞÎÙÊ ÍÅÔÏÄ}
$\B x = \B A^{-1}\B b$\\
$\B A \cdot \B A^{-1} = \B A^{-1} \cdot \B A = \B E$.
îÁÈÏÖÄÅÎÉÅ ÏÂÒÁÔÎÏÊ ÍÁÔÒÉÃÙ:
\begin{itemize}
\item Ó ÐÏÍÏÝØÀ ÐÒÉÓÏÅÄÉÎÅÎÎÏÊ: $(\B A | \B E )$ \so $(\B E | \B A^{-1})$;
\item $\B A^{-1} = \dfrac{\mathrm{adj\,}\B A}{|\B A|}$, ÐÒÉÓÏÅÄÉÎÅÎÎÁÑ ÍÁÔÒÉÃÁ $\mathrm{adj\,}\B A$
Ñ×ÌÑÅÔÓÑ ÔÒÁÎÓÐÏÎÉÒÏ×ÁÎÎÏÊ ÍÁÔÒÉÃÅÊ ÁÌÇÅÂÒÁÉÞÅÓËÉÈ ÄÏÐÏÌÎÅÎÉÊ ($(-1)^{i+j}M_{ij}$, $M_ij$~--
ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÉÊ ÄÏÐÏÌÎÉÔÅÌØÎÙÊ ÍÉÎÏÒ~--- ÏÐÒÅÄÅÌÉÔÅÌØ ÍÁÔÒÉÃÙ Ó ×ÙÞÅÒËÎÕÔÙÍÉ $i$-Ê ÓÔÒÏËÏÊ É $j$
ÓÔÏÌÂÃÏÍ).
\item É Ô.Ä., É Ô.Ð.
\end{itemize}
æÏÒÍÕÌÙ ëÒÁÍÅÒÁ: $x_j = |A_j|/|A|$, $A_j$ ÐÏÌÕÞÁÅÔÓÑ ÉÚ $A$ ÚÁÍÅÎÏÊ $j$-ÇÏ ÓÔÏÌÂÃÁ ÎÁ $\B b$.
\end{block}
}
\only<2>{
\begin{block}{íÅÔÏÄ çÁÕÓÓÁ}
$$
\B A_d\B{x} = \pmb\beta,\quad
\B A_d=\begin{pmatrix}
\alpha_{11}&\alpha_{12}&\alpha_{13}&\cdots&\alpha_{1m}\\
0&\alpha_{22}&\alpha_{23}&\cdots&\alpha_{2m}\\
\cdot&\cdot&\cdot&\cdots&\cdot\\
0&0&0&\cdots&\alpha_{mm}
\end{pmatrix}.
$$
ðÒÑÍÏÊ ÈÏÄ~--- ÐÒÅÏÂÒÁÚÏ×ÁÎÉÅ Ë ÄÉÁÇÏÎÁÌØÎÏÊ ÆÏÒÍÅ:
$$
\left(\begin{matrix}
\alpha_{11}&\alpha_{12}&\alpha_{13}&\cdots&\alpha_{1m}\\
0&\alpha_{22}&\alpha_{23}&\cdots&\alpha_{2m}\\
\cdot&\cdot&\cdot&\cdots&\cdot\\
0&0&0&\cdots&\alpha_{mm}
\end{matrix}\middle|
\begin{matrix}\beta_1\\\beta_2\\\cdot\\\beta_m\end{matrix}\right).
$$
ïÂÒÁÔÎÙÊ ÈÏÄ~--- ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÅ ÎÁÈÏÖÄÅÎÉÅ $x_m$, $x_{m-1}$, \dots, $x_1$.
$N\propto n^3$~--- ÐÒÑÍÏÊ, $N\propto n^2$~--- ÏÂÒÁÔÎÙÊ ÈÏÄ.
\end{block}
}
\only<3>{
\begin{block}{íÅÔÏÄ úÅÊÄÅÌÑ}
$$\B{Bx}_{n+1}+\B{Cx}_n=\B b,$$
ÇÄÅ
$$\B B=\begin{pmatrix}
a_{11}&0&0&\cdots&0\\
a_{21}&a_{22}&0&\cdots&0\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
a_{m1}&a_{m2}&a_{m3}&\cdots&a_{mm}
\end{pmatrix},\qquad
\B C=\begin{pmatrix}
0&a_{12}&a_{13}&\cdots&a_{1m}\\
0&0&a_{23}&\cdots&a_{2m}\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
0&0&0&\cdots&0
\end{pmatrix}.
$$
ïÔÓÀÄÁ ÐÏÌÕÞÁÅÍ
$$\B x_{n+1}=-\B B^{-1}\B{Cx}_n +\B B^{-1}\B b.$$
\end{block}
}
\only<4>{
\begin{block}{LU-ÍÅÔÏÄ}
$$\B A=\B L\cdot \B U,$$
ÇÄÅ
$$\B L=\begin{pmatrix}
l_{11}&0&0&\cdots&0\\
l_{21}&l_{22}&0&\cdots&0\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
l_{m1}&l_{m2}&l_{m3}&\cdots&l_{mm}
\end{pmatrix},\qquad
\B U=\begin{pmatrix}
1&u_{12}&u_{13}&\cdots&u_{1m}\\
0&1&u_{23}&\cdots&u_{2m}\\
\vdots&\vdots&\vdots&\ddots&\vdots\\
0&0&0&\cdots&1
\end{pmatrix}.
$$
ðÒÑÍÏÊ ÈÏÄ: $\B L\cdot \B U\cdot \B x \equiv \B L\cdot\B y= \B b$, ÎÁÈÏÄÉÍ $\B y$,
ÉÚ $\B U\cdot \B x =\B y$ ÎÁÈÏÄÉÍ $\B x$.
$$\begin{cases}
l_{ij}=a_{ij}-\Sum_{s=1}^{j-1}l_{is}u_{sj},& i\ge j;\\
u_{ij}=\frac1{l_{ii}}\Bigl(a_{ij}-\Sum_{s=1}^{j-1}l_{is}u_{sj}\Bigr), & i < j.
\end{cases}
$$
LU-ÒÁÚÌÏÖÅÎÉÅ ×ÏÚÍÏÖÎÏ ÄÌÑ ÍÁÔÒÉÃ Ó ÐÒÅÏÂÌÁÄÁÎÉÅÍ ÄÉÁÇÏÎÁÌØÎÙÈ ÜÌÅÍÅÎÔÏ×
\end{block}
}
\only<5>{
\begin{block}{òÁÚÌÏÖÅÎÉÅ èÏÌÅÃËÏÇÏ}
$\B A=\B L\cdot \B L^T$, ÌÉÂÏ $\B A=\B U^T\cdot \B U$, ÇÄÅ $\B L$~-- ÎÉÖÎÑÑ ÔÒÅÕÇÏÌØÎÁÑ ÍÁÔÒÉÃÁ
ÓÏ ÓÔÒÏÇÏ ÐÏÌÏÖÉÔÅÌØÎÙÍÉ ÜÌÅÍÅÎÔÁÍÉ ÎÁ ÄÉÁÇÏÎÁÌÉ, $\B U$~-- ×ÅÒÈÎÑÑ ÔÒÅÕÇÏÌØÎÁÑ ÍÁÔÒÉÃÁ.
òÁÚÌÏÖÅÎÉÅ èÏÌÅÃËÏÇÏ ×ÓÅÇÄÁ ÓÕÝÅÓÔ×ÕÅÔ É ÅÄÉÎÓÔ×ÅÎÎÏ ÄÌÑ ÌÀÂÏÊ ÓÉÍÍÅÔÒÉÞÎÏÊ (ÏÔÎÏÓÉÔÅÌØÎÏ ÇÌÁ×ÎÏÊ
ÄÉÁÇÏÎÁÌÉ) ÐÏÌÏÖÉÔÅÌØÎÏ-ÏÐÒÅÄÅÌÅÎÎÏÊ ÍÁÔÒÉÃÙ (×ÓÅ ÄÉÁÇÏÎÁÌØÎÙÅ ÍÉÎÏÒÙ ÐÏÌÏÖÉÔÅÌØÎÙ).
$$\begin{cases}
l_{ii}=\sqrt{a_{ii} - \Sum_{s=1}^{i-1}l^2_{is}}; \\
l_{ij} = \frac1{l_{ii}}\Bigl( a_{ij} - \Sum_{s=1}^{j-1}l_{is}l_{js}\Bigr), & j < i.
\end{cases}
$$
ðÒÑÍÏÊ É ÏÂÒÁÔÎÙÊ ÈÏÄÙ ÁÎÁÌÏÇÉÞÎÙ LU-ÒÁÚÌÏÖÅÎÉÀ.
\end{block}
}
\only<6>{
\begin{block}{}
åÓÌÉ $\B A$ ÓÏÄÅÒÖÉÔ~$m$ ÓÔÒÏË É~$n$ ÓÔÏÌÂÃÏ×, ÔÏ:
\begin{description}
\item[$m=n$] Ë×ÁÄÒÁÔÎÁÑ ÍÁÔÒÉÃÁ, ×ÏÚÍÏÖÎÏ ÓÕÝÅÓÔ×Ï×ÁÎÉÅ ÔÏÞÎÏÇÏ ÒÅÛÅÎÉÑ;
\item[$m<n$] ÎÅÄÏÏÐÒÅÄÅÌÅÎÎÁÑ ÓÉÓÔÅÍÁ, ÒÅÛÅÎÉÅ ×ÏÚÍÏÖÎÏ ÌÉÛØ × ÏÂÝÅÍ ×ÉÄÅ
Ó ÐÏ ËÒÁÊÎÅÊ ÍÅÒÅ~$n-m$ Ó×ÏÂÏÄÎÙÈ ËÏÜÆÆÉÃÉÅÎÔÏ×;
\item[$m>n$] ÐÅÒÅÏÐÒÅÄÅÌÅÎÎÁÑ ÓÉÓÔÅÍÁ, ÐÒÉÂÌÉÖÅÎÎÏÅ ÒÅÛÅÎÉÅ ËÏÔÏÒÏÊ ÎÁÈÏÄÉÔÓÑ
ÐÒÉ ÐÏÍÏÝÉ ÍÅÔÏÄÁ ÎÁÉÍÅÎØÛÉÈ Ë×ÁÄÒÁÔÏ× (× ÓÌÕÞÁÅ ÌÉÎÅÊÎÏÊ ÚÁ×ÉÓÉÍÏÓÔÉ ÓÔÒÏË
ÄÁÎÎÏÊ ÓÉÓÔÅÍÙ ÍÏÖÅÔ ÓÕÝÅÓÔ×Ï×ÁÔØ É ÔÏÞÎÏÅ ÒÅÛÅÎÉÅ).
\end{description}
\end{block}
}
\only<7>{
\begin{block}{íÅÔÏÄ ÎÁÉÍÅÎØÛÉÈ Ë×ÁÄÒÁÔÏ× ($m > n$)}
$\B{x=A\backslash b}$, %), ÐÓÅ×ÄÏÏÂÒÁÔÎÁÑ ÍÁÔÒÉÃÁ, \dots
$S=\sum_i(\sum_j a_{ij}x_j - b_i)$, $\partder{S}{x_j}=0$ \so
$\B C\B x = \B d$, ÇÄÅ
$c_{kj} = \sum_i a_{ik}a_{ij}$, $k,j=\overline{1,n}$, $d_k = \sum_i a_{ik}b_i$.
ô.Ï. $\B C = \B A^T\cdot \B A$, $\B d=\B A^T\B b$.
\end{block}
\begin{block}{íÅÔÏÄ ÐÒÏÓÔÏÊ ÉÔÅÒÁÃÉÉ}
$\B{x=Bx+c}$, $\B x_{n+1}=\B B\B x_n+\B c$.\\
óÌÏÖÎÏÓÔØÀ ÍÅÔÏÄÁ ÐÒÏÓÔÏÊ ÉÔÅÒÁÃÉÉ ÐÒÉ ÒÅÛÅÎÉÉ ÍÁÔÒÉà ÂÏÌØÛÉÈ ÒÁÚÍÅÒÎÏÓÔÅÊ Ñ×ÌÑÅÔÓÑ ÏÓÏÂÏÅ Ó×ÏÊÓÔ×Ï
ÔÁËÉÈ ÍÁÔÒÉÃ~--- ÓÕÝÅÓÔ×Ï×ÁÎÉÅ ÐÏÞÔÉ ÓÏÂÓÔ×ÅÎÎÙÈ ÚÎÁÞÅÎÉÊ, $\lambda$:
$||\B{Ax}-\lambda\B x||\le\epsilon||\B x||$ ÐÒÉ $||\B x||\ne0$.\\
\end{block}
}
\end{frame}
\begin{frame}{þÉÓÌÏ ÏÂÕÓÌÏ×ÌÅÎÎÏÓÔÉ ÍÁÔÒÉÃÙ}
\begin{block}{ïÃÅÎËÁ ÏÛÉÂËÉ ÒÅÛÅÎÉÑ}
ðÕÓÔØ $\B x'$~-- ÐÒÉÂÌÉÖÅÎÎÏÅ ÒÅÛÅÎÉÅ. áÂÓÏÌÀÔÎÁÑ É ÏÔÎÏÓÉÔÅÌØÎÁÑ ÏÛÉÂËÉ: $||\B x-\B x'||$
É $\frc{||\B x-\B x'||}{||\B x||}$. îÁÍ ÉÚ×ÅÓÔÎÁ ÎÅ×ÑÚËÁ $\B r=\B b-A\B x'$:
$$\B r=A\B x-A\B x'=A(\B x-\B x')\so ||\B x-\B x'||=||A^{-1}\B r||\le ||A^{-1}||\,||\B r||,$$
Á Ô.Ë. $||\B b||\le||A||\,||\B x||$, $\frc{1}{||\B x||}\le\frc{||A||}{||\B b||}$:
$$\frac{||\B x-\B x'||}{||\B x||}\le||A^{-1}||\,||\B r||\,\frac{||A||}{||\B b||}=k(A)\frac{||\B
r||}{||\B b||}.$$
þÉÓÌÏ ÏÂÕÓÌÏ×ÌÅÎÎÏÓÔÉ: $k(A)=||A||\,||A^{-1}||$. þÅÍ ÏÎÏ ÂÏÌØÛÅ, ÔÅÍ ÂÏÌØÛÅ ÆÌÕËÔÕÁÃÉÉ $\B x$
×ÌÉÑÀÔ ÎÁ ÏÂÝÅÅ ÒÅÛÅÎÉÅ. õ ÈÏÒÏÛÏ ÏÂÕÓÌÏ×ÌÅÎÎÙÈ ÍÁÔÒÉà $K(A)\equiv1$ (ÎÁÐÒ., ÏÒÔÏÇÏÎÁÌØÎÙÅ ÍÁÔÒÉÃÙ,
Õ ËÏÔÏÒÙÈ $A^T=A^{-1}$).
\end{block}
\end{frame}
\section{óÔÅÐÅÎÎÙÅ ÕÒÁ×ÎÅÎÉÑ}
\begin{frame}{óÔÅÐÅÎÎÙÅ ÕÒÁ×ÎÅÎÉÑ}
\begin{defin}
óÔÅÐÅÎÎÏÅ ÕÒÁ×ÎÅÎÉÅ ÉÍÅÅÔ ×ÉÄ $p_n(x)=0$, ÇÄÅ $p_n(x)$~-- ÐÏÌÉÎÏÍ~$n$~-Ê ÓÔÅÐÅÎÉ ×ÉÄÁ
$p_n(x)=\sum_{i=0}^n C_nx^n$.
\end{defin}
\begin{block}{íÅÔÏÄÙ ÒÅÛÅÎÉÑ}
ôÏÞÎÙÅ~--- ÄÏ ÔÒÅÔØÅÊ ÓÔÅÐÅÎÉ ×ËÌÀÞÉÔÅÌØÎÏ (× ÏÂÝÅÍ ÓÌÕÞÁÅ) É ÉÔÅÒÁÃÉÏÎÎÙÅ:
\begin{description}
\item[ÂÉÓÅËÃÉÑ] ÄÅÌÅÎÉÅ ÐÏÐÏÌÁÍ ÏÔÒÅÚËÁ, ÇÄÅ ÎÁÈÏÄÉÔÓÑ ËÏÒÅÎØ;
\item[ÍÅÔÏÄ ÈÏÒÄ] ÚÁÍÅÎÁ ÐÏÌÉÎÏÍÁ ÈÏÒÄÏÊ, ÐÒÏÈÏÄÑÝÅÊ ÞÅÒÅÚ ÔÏÞËÉ $(x_1, p_n(x_1)$ É $(x_2,
p_n(x_2)$;
\item[ÍÅÔÏÄ îØÀÔÏÎÁ] ÉÍÅÅÔ ÂÙÓÔÒÕÀ ÓÈÏÄÉÍÏÓÔØ, ÎÏ ÔÒÅÂÕÅÔ ÚÎÁËÏÐÏÓÔÏÑÎÓÔ×Á $f'(x)$ É $f''(x)$ ÎÁ
×ÙÂÒÁÎÎÏÍ ÉÎÔÅÒ×ÁÌÅ $(x_1, x_2)$.
\end{description}
\end{block}
\end{frame}
\begin{frame}{âÉÓÅËÃÉÑ (ÄÉÈÏÔÏÍÉÑ)}
\img{bisect}
ïÔÒÅÚÏË ÄÅÌÉÔÓÑ ×ÐÌÏÔØ ÄÏ ÚÁÄÁÎÎÏÊ ÔÏÞÎÏÓÔÉ $b_n-a_n\le\epsilon$, ËÏÒÅÎØ $x\approx(b_n+a_n)/2$.
ðÒÉÍÅÎÑÅÔÓÑ É ÄÌÑ ÐÏÉÓËÁ ÚÎÁÞÅÎÉÊ × ÕÐÏÒÑÄÏÞÅÎÎÏÍ ÒÑÄÕ.
\end{frame}
\begin{frame}{íÅÔÏÄ ÈÏÒÄ (ÓÅËÕÝÉÈ)}
\begin{block}{}
$$x_{i+1}=x_{i-1}+\frac{y_{i-1}\cdot(x_i-x_{i-1})}{y_i-y_{i-1}}.$$
\end{block}
\begin{pict}\smimg[0.5]{chords1}\,\smimg[0.5]{chords2}\end{pict}
\end{frame}
\begin{blueframe}{íÅÔÏÄ îØÀÔÏÎÁ}
\begin{block}{}
$$x_{i+1}=x_i+\frac{y_i}{y'_i}.$$
\end{block}
\begin{pict}\smimg[0.5]{newton1}\,\smimg[0.5]{newton2}\end{pict}
\end{blueframe}
\section{þÉÓÌÅÎÎÏÅ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÅ É ÄÉÆÆÅÒÅÎÃÉÒÏ×ÁÎÉÅ}
\begin{frame}{þÉÓÌÅÎÎÏÅ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÅ}
\begin{block}{}
äÌÑ ÞÉÓÌÅÎÎÏÇÏ ÒÅÛÅÎÉÑ ÕÒÁ×ÎÅÎÉÑ $\displaystyle I=\Int_a^b f(x)\,dx$ ÎÁÉÂÏÌÅÅ ÐÏÐÕÌÑÒÎÙ:
\begin{description}
\item[ÍÅÔÏÄ ÐÒÑÍÏÕÇÏÌØÎÉËÏ×] $I\approx\sum_{i=1}^n f(x_i)[x_i-x_{i-1}]$;
\item[ÍÅÔÏÄ ÔÒÁÐÅÃÉÊ] $I\approx\sum_{i=1}^n \frac{f(x_{i-1})+f(x_i)}{2}[x_i-x_{i-1}]$;
\item[ÍÅÔÏÄ óÉÍÐÓÏÎÁ] $\Int_{-1}^1 f(x)\,dx\approx\frac13\bigl(f(-1)+4f(0)+f(1)\bigr)$ \so
$I\approx\frac{b-a}{6n}\Bigl(f(x_0)+f(x_n)+2\sum_{i=1}^{n/2-1}
f(x_{2i}) + 4\sum_{i=1}^{n/2}f(x_{2i-1})\Bigr)$.
\end{description}
É ÍÎÏÇÉÅ ÄÒÕÇÉÅ.
\end{block}
\end{frame}
\begin{frame}{íÅÔÏÄ ÐÒÑÍÏÕÇÏÌØÎÉËÏ×}
\begin{columns}
\column{0.45\textwidth}
\begin{block}{}
$$\int_a^b f(x)\,dx\approx$$
\begin{list}{}{}
\item $\displaystyle\sum_{i=0}^{n-1}f(x_{i})(x_{i+1}-x_{i})$;
\item $\displaystyle\sum_{i=1}^{n}f(x_{i})(x_i-x_{i-1})$;
\item $\displaystyle\sum_{i=0}^{n-1}f\bigl(\frac{x_{i}+x_{i+1}}{2}\bigr)(x_{i+1}-x_{i})$.
\end{list}
äÌÑ ÒÁ×ÎÏÍÅÒÎÙÈ ÓÅÔÏË:
$\displaystyle h\sum_{i=0}^{n-1} f_i$;
$\displaystyle h\sum_{i=1}^{n} f_i$;
$\displaystyle h\bigl(\sum_{i=1}^{n-1} f_i + \frac{f_0+f_n}{2}\bigr)$.
\end{block}
\column{0.45\textwidth}
\img{rectangmeth}
\end{columns}
\end{frame}
\begin{lightframe}{íÅÔÏÄ ÔÒÁÐÅÃÉÊ}
\begin{columns}
\column{0.6\textwidth}
\begin{block}{}
$$\int_a^b f(x)\,dx\approx
\sum_{i=0}^{n-1}\frac{f(x_i)+f(x_{i+1})}{2}(x_{i+1}-x_i).$$
äÌÑ ÒÁ×ÎÏÍÅÒÎÙÈ ÓÅÔÏË~--- ÆÏÒÍÕÌÁ ëÏÔÅÓÁ:
$$\int_a^b f(x)\,dx =
h\left(\frac{f_0+f_n}{2}+\sum_{i=1}^{n-1}f_i\right) + E_n(f),$$
$$E_n(f)=-\frac{f''(\xi)}{12}(b-a)h^2, \xi\in[a,b].$$
\end{block}
\column{0.4\textwidth}
\img{trapezmeth}
\end{columns}
\end{lightframe}
\begin{blueframe}{íÅÔÏÄ óÉÍÐÓÏÎÁ}
\begin{columns}
\column{0.6\textwidth}
\begin{block}{}
$$\int_a^b f(x)\,dx\approx \frac{b-a}{6}\left(f(a)+4f\bigl(\frac{a+b}{2}\bigr)\right)$$
\end{block}
\column{0.4\textwidth}
\img{Simpsons_method_illustration}
\end{columns}
\begin{block}{}
æÏÒÍÕÌÁ ëÏÔÅÓÁ:
$$I\approx \frac{h}{3}\Bigl(f(x_0)+
2\sum_{i=1}^{N/2-1}f(x_{2i}) + 4\sum_{i=1}^{N/2}f(x_{2i-1} + f(x_N)\Bigr).$$
\end{block}
\end{blueframe}
\begin{frame}{þÉÓÌÅÎÎÏÅ ÄÉÆÆÅÒÅÎÃÉÒÏ×ÁÎÉÅ}
\begin{block}{}
áÐÐÒÏËÓÉÍÁÃÉÑ ÆÕÎËÃÉÉ ÉÎÔÅÒÐÏÌÑÃÉÏÎÎÙÍ ÍÎÏÇÏÞÌÅÎÏÍ (îØÀÔÏÎÁ, óÔÉÒÌÉÎÇÁ É Ô.Ð.), ÒÁÚÄÅÌÅÎÎÙÅ
ÒÁÚÎÏÓÔÉ.
\end{block}
\begin{block}{áÐÐÒÏËÓÉÍÁÃÉÑ ÍÎÏÇÏÞÌÅÎÏÍ}
$$f(x)\approx P_N(x)\quad\Arr\quad f^{(r)}(x)\approx P_N^{(r)}(x).$$
ðÏÌÉÎÏÍ îØÀÔÏÎÁ:
$$P_N(x)=\sum_{m=0}^{N}C_x^m\sum _{k=0}^{m}(-1)^{m-k}\,C_m^k\,f(k).$$
ðÏÌÉÎÏÍ ìÁÇÒÁÎÖÁ:
$$P_N(x) = \sum_{k=0}^N y_k \frac {(x-x_0)(x-x_1) \ldots (x-x_{k-1})(x-x_{k+1}) \ldots (x-x_n)} {(x_k-x_0)(x_k-x_1) \ldots
(x_k-x_{k-1})(x_k-x_{k+1}) \ldots (x_k-x_n)}.$$
á ÔÁËÖÅ: ÉÎÔÅÒÐÏÌÑÃÉÑ ËÕÂÉÞÅÓËÉÍÉ ÓÐÌÁÊÎÁÍÉ, ÒÁÚÌÏÖÅÎÉÅ ÐÏ ÂÁÚÉÓÕ ÔÒÉÇÏÎÏÍÅÔÒÉÞÅÓËÉÈ ÆÕÎËÃÉÊ É Ô.Ð.
\end{block}
\end{frame}
\begin{block}{òÁÚÄÅÌÅÎÎÙÅ ÒÁÚÎÏÓÔÉ}
÷ ÎÕÌÅ×ÏÍ ÐÒÉÂÌÉÖÅÎÉÉ ÍÏÖÎÏ ÚÁÍÅÎÉÔØ ÐÒÏÉÚ×ÏÄÎÕÀ $f^{(n)}$ ÒÁÚÄÅÌÅÎÎÏÊ ÒÁÚÎÏÓÔØÀ $n$-ÇÏ ÐÏÒÑÄËÁ.
$$f(x_{0};\;x_{1};\;\ldots ;\;x_{n})=\sum _{j=0}^{n}{\frac {f(x_j)}{\prod \limits _{i=0 \atop i\neq j}^{n}(x_{j}-x_{i})}}.$$
÷ ÞÁÓÔÎÏÓÔÉ:
$$f(x_0;\;x_1)={\frac {f(x_1)}{x_1-x_0}}+{\frac {f(x_0)}{x_0-x_1}},$$
$$f(x_0;\;x_1;\;x_2)={\frac {f(x_2)}{(x_2-x_1)(x_2-x_0)}}+{\frac {f(x_1)}{(x_1-x_2)(x_1-x_0)}}+{\frac
{f(x_0)}{(x_0-x_2)(x_0-x_1)}}\ldots$$
\end{block}
\section{äÉÆÆÅÒÅÎÃÉÁÌØÎÙÅ ÕÒÁ×ÎÅÎÉÑ}
\begin{frame}{äÉÆÆÅÒÅÎÃÉÁÌØÎÙÅ ÕÒÁ×ÎÅÎÉÑ}
\only<1>{
\begin{defin}
ïÂÙËÎÏ×ÅÎÎÙÅ ÄÉÆÆÅÒÅÎÃÉÁÌØÎÙÅ ÕÒÁ×ÎÅÎÉÑ~(ïäõ) ÐÏÒÑÄËÁ~$n$ ÚÁÄÁÀÔÓÑ × ×ÉÄÅ
ÆÕÎËÃÉÉ $f(x,y,y',\ldots,y^{(n)})=0$.
\end{defin}
\begin{block}{}
òÁÚÄÅÌÅÎÉÅ ÐÅÒÅÍÅÎÎÙÈ:\vspace{-2em}
$$y'=f(x,y) \so \phi(y)\,dy=\psi(x)\,dx \so y=y_0+\Int_0^{x}\psi(x)\,dx.$$
ïäõ ×ÔÏÒÏÇÏ ÐÏÒÑÄËÁ:
$$Ay''+By'+Cy+Dx=0.$$
åÓÌÉ $D\equiv0$, Á ÍÎÏÖÉÔÅÌÉ $A$, $B$ É~$C$~--- ËÏÎÓÔÁÎÔÙ, ÉÍÅÅÍ ÏÄÎÏÒÏÄÎÏÅ ïäõ.
$y=\C_1\exp(k_1x)+\C_2\exp(k_2x)$, ÇÄÅ~$k_1$ É~$k_2$~-- ËÏÒÎÉ
ÈÁÒÁËÔÅÒÉÓÔÉÞÅÓËÏÇÏ ÕÒÁ×ÎÅÎÉÑ $Ak^2+Bk+C=0$.
\end{block}}
\only<2>{
\begin{defin}
äÉÆÆÅÒÅÎÃÉÁÌØÎÙÅ ÕÒÁ×ÎÅÎÉÑ × ÞÁÓÔÎÙÈ ÐÒÏÉÚ×ÏÄÎÙÈ~(þäõ) ÄÌÑ ÆÕÎËÃÉÉ
$y=y(x_1,x_2,\cdots,x_n)$ ÉÍÅÀÔ ×ÉÄ
$$f(y,x_1,\ldots,x_n;\partder{y}{x_1},\ldots;\dpartder{y}{x_1},\ldots;\cdots;
\frac{\partial^m y}{\partial x_1^m},\ldots)=0.$$
\end{defin}
\begin{block}{}
ïÄÎÁËÏ, ÎÁÉÂÏÌÅÅ ÞÁÓÔÏ ×ÓÔÒÅÞÁÀÔÓÑ þäõ ÐÅÒ×ÏÇÏ ÐÏÒÑÄËÁ ÄÌÑ ÆÕÎËÃÉÉ Ä×ÕÈ
ÐÅÒÅÍÅÎÎÙÈ $z=z(x,y)$ ×ÉÄÁ
$$f(z,x,y,\partder{z}{x},\partder{z}{y})=0.$$
\end{block}}
\only<3>{
\begin{block}
îÅÌÉÎÅÊÎÙÅ ÄÉÆÆÅÒÅÎÃÉÁÌØÎÙÅ ÕÒÁ×ÎÅÎÉÑ ÓÏÄÅÒÖÁÔ ÎÅËÏÔÏÒÙÅ ÐÒÏÉÚ×ÏÄÎÙÅ
ÆÕÎËÃÉÉ~$y$ ÎÅ ËÁË ÐÒÏÓÔÙÅ ÍÎÏÖÉÔÅÌÉ, Á ËÁË ÁÒÇÕÍÅÎÔÙ ÆÕÎËÃÉÊ (ÞÁÝÅ ×ÓÅÇÏ~---
ÓÔÅÐÅÎÎÙÈ), ÎÁÐÒÉÍÅÒ: $(y'')^3-\sin y'=\tg(xy)$. ïÂÙÞÎÙÅ ÆÉÚÉÞÅÓËÉÅ ÚÁÄÁÞÉ
ÎÉËÏÇÄÁ ÎÅ ÐÒÉ×ÏÄÑÔ Ë ÔÁËÉÍ ÕÒÁ×ÎÅÎÉÑÍ, ÏÄÎÁËÏ, É ÉÈ ÒÅÛÅÎÉÑ ×ÐÏÌÎÅ ÍÏÖÎÏ
ÎÁÊÔÉ ÐÒÉ ÐÏÍÏÝÉ ÞÉÓÌÅÎÎÙÈ ÍÅÔÏÄÏ×.
\end{block}
\begin{block}{íÅÔÏÄÙ ÒÅÛÅÎÉÑ}
òÕÎÇÅ--ëÕÔÔÙ, üÊÌÅÒÁ, áÄÁÍÓÁ, ËÏÎÅÞÎÙÈ ÒÁÚÎÏÓÔÅÊ É Ô.Ð.
äÉÆÆÅÒÅÎÃÉÁÌØÎÙÅ ÕÒÁ×ÎÅÎÉÑ ×ÙÓÛÉÈ ÐÏÒÑÄËÏ× Ó×ÏÄÑÔ ÐÕÔÅÍ ÚÁÍÅÎÙ ÐÅÒÅÍÅÎÎÙÈ Ë ÓÉÓÔÅÍÅ ïäõ ÐÅÒ×ÏÇÏ
ÐÏÒÑÄËÁ.
\end{block}
}
\end{frame}
\begin{blueframe}{}
\begin{block}{íÅÔÏÄ üÊÌÅÒÁ}
áÐÐÒÏËÓÉÍÁÃÉÑ ÉÎÔÅÇÒÁÌØÎÏÊ ËÒÉ×ÏÊ ËÕÓÏÞÎÏ-ÌÉÎÅÊÎÏÊ ÆÕÎËÃÉÅÊ. úÁÄÁÞÁ ëÏÛÉ × ÐÒÏÓÔÅÊÛÅÍ ×ÉÄÅ:
$\frac{dy}{dx}=f(x,y)$, $y|_{x=x_0}=y_0$. òÅÛÅÎÉÅ ÉÝÅÔÓÑ ÎÁ ÉÎÔÅÒ×ÁÌÅ $(x_0, b]$.
$$y_i=y_{i-1}+(x_i-x_{i-1})f(x_{i-1},y_{i-1}),\qquad i=\overline{1,n}.$$
\end{block}
\img[0.5]{Euler_method}
\end{blueframe}
\begin{frame}{}
\begin{block}{íÅÔÏÄ òÕÎÇÅ-ëÕÔÔÙ}
$$y_{n+1}=y_n+\frac{h}{6}\bigl(k_1+2k_2+2k_3+k_4\bigr),\qquad \text{ÇÄÅ}$$
$k_1=f(x_n,y_n)$, $k_2=f\bigl(x_n+\frc{h}2, y_n+\frc{h}2 k_1\bigr)$,
$k_3=f\bigl(x_n+\frc{h}2, y_n+\frc{h}2 k_2\bigr)$,
$k_4=f(x_n+h,y_n+hk_3)$ ($h$~-- ÛÁÇ ÓÅÔËÉ ÐÏ $x$).
\end{block}
\img[0.5]{Runge-Kutta}
\end{frame}
\begin{frame}{óÐÁÓÉÂÏ ÚÁ ×ÎÉÍÁÎÉÅ!}
\centering
\begin{minipage}{5cm}
\begin{block}{mailto}
eddy@sao.ru\\
edward.emelianoff@gmail.com
\end{block}\end{minipage}
\end{frame}
\end{document}