2022-04-14 14:41:35 +03:00

715 lines
28 KiB
TeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[10pt,pdf,hyperref={unicode},aspectratio=169]{beamer}
\hypersetup{pdfpagemode=FullScreen}
\usepackage{lect}
\title[ôÅÌÅÓËÏÐÙ]{éÎÓÔÒÕÍÅÎÔÙ × ÐÒÉÂÌÉÖÅÎÉÑÈ ÇÅÏÍÅÔÒÉÞÅÓËÏÊ É ×ÏÌÎÏ×ÏÊ ÏÐÔÉËÉ}
\date{7~ÁÐÒÅÌÑ 2022~ÇÏÄÁ}
\def\ig#1{\includegraphics[width=\columnwidth]{#1}}
\def\igh#1{\includegraphics[width=0.5\columnwidth]{#1}}
\def\IG#1#2{\includegraphics[width=#1\columnwidth]{#2}}
\begin{document}
% ôÉÔÕÌ
\bgroup\setbeamercolor{normal text}{bg=black}
\begin{frame}
\maketitle
\end{frame}\egroup
\logo{}
% óÏÄÅÒÖÁÎÉÅ
\begin{frame}
\tableofcontents
\end{frame}
\section{ôÅÌÅÓËÏÐ ËÁË ËÏÎÃÅÎÔÒÁÔÏÒ ÜÎÅÒÇÉÉ}
\subsection{úÅÒËÁÌÏ}
\begin{frame}{ôÅÌÅÓËÏÐ ËÁË ËÏÎÃÅÎÔÒÁÔÏÒ ÜÎÅÒÇÉÉ. úÅÒËÁÌÏ}
\vspace*{-1em}
\only<1,2>{\begin{columns}\column{0.35\textwidth}\begin{block}{áÒÈÉÍÅÄ}
<<çÉÐÅÒÂÏÌÏÉÄ>> (212\,× ÄÏ Î.Ü.) "--- ÐÏÐÙÔËÁ ÓÖÅÞØ ÏÓÁÄÉ×ÛÉÊ ÒÉÍÓËÉÊ ÆÌÏÔ ÐÏÄ óÉÒÁËÕÚÁÍÉ ×Ï ×ÒÅÍÑ
2~ÐÕÎÉÞÅÓËÏÊ ×ÏÊÎÙ (218--201\,ÇÇ ÄÏ Î.Ü.).
\end{block}\column{0.6\textwidth}}
\only<1>{\img{Giperboloid-Arhimeda}}
\only<2>{\img{archimed}}
\only<1,2>{\end{columns}}
\only<3>{\begin{columns}\column{0.3\textwidth}\begin{block}{}
úÁÖÖÅÎÉÅ ÏÌÉÍÐÉÊÓËÏÇÏ ÏÇÎÑ. éÇÒÙ~--- ÒÁÎØÛÅ 776~Ç. ÄÏ~Î.Ü. (ÄÏ 394~Ç.\,Î.Ü., ×ÏÚÏÂÎÏ×ÌÅÎÙ ×
1896~Ç.)!
\end{block}\column{0.65\textwidth}\img{olympic_torch_lighting}\end{columns}}
\end{frame}
\subsection{ìÉÎÚÁ}
\begin{frame}{ôÅÌÅÓËÏÐ ËÁË ËÏÎÃÅÎÔÒÁÔÏÒ ÜÎÅÒÇÉÉ. ìÉÎÚÁ}
\vspace*{-1em}\begin{columns}
\column{0.45\textwidth}
\begin{defin}\textbf{ìÉÎÚÁ} "--- ÏÔ ÌÁÔ. <<lens>>~-- ÞÅÞÅ×ÉÃÁ.\end{defin}
\begin{block}{}
ðØÅÓÁ áÒÉÓÔÏÆÁÎÁ <<ïÂÌÁËÁ>> (424\,Ç. ÄÏ Î.Ü.) "--- ÄÏÂÙÞÁ ÏÇÎÑ.
äÒÅ×ÎÉÊ òÉÍ. ðÌÉÎÉÊ ÓÔÁÒÛÉÊ (23--79\,ÇÇ. Î.Ü.) "--- ÄÏÂÙÞÁ ÏÇÎÑ, ËÏÒÒÅËÃÉÑ ÚÒÅÎÉÑ (ÉÍÐÅÒÁÔÏÒ îÅÒÏÎ, ×ÏÇÎÕÔÙÊ ÉÚÕÍÒÕÄ).
áÌØÈÁÚÅÎ (965--1038\,ÇÇ. Î.Ü.) "--- ÔÒÁËÔÁÔ ÐÏ ÏÐÔÉËÅ, ÆÏÒÍÉÒÏ×ÁÎÉÅ ÉÚÏÂÒÁÖÅÎÉÑ ÇÌÁÚÏÍ.
1280-Å ÇÏÄÙ, éÔÁÌÉÑ (óÁÌØ×ÉÎÏ Ä'áÒÍÁÔÅ) "--- ÏÞËÉ.
\end{block}
\column{0.5\textwidth}\img[0.9]{Nimrud_lens_British_Museum}
\vspace*{-1em}\begin{block}{}ìÉÎÚÁ îÉÍÒÕÄÁ (750--710\,ÇÇ. ÄÏ Î.Ü.). îÉÍÒÕÄ "--- ÏÄÎÁ ÉÚ ÄÒÅ×ÎÉÈ
ÓÔÏÌÉÃ áÓÓÉÒÉÉ.\end{block}
\end{columns}
\end{frame}
\begin{frame}{ó×ÅÔÏ×ÁÑ ÜÎÅÒÇÅÔÉËÁ}
\textbf{óÌÀÓÁÒÅ× ç.ç.} ï ×ÏÚÍÏÖÎÏÍ É ÎÅ×ÏÚÍÏÖÎÏÍ × ÏÐÔÉËÅ (1-Å ÉÚÄ. 1944, 2-Å ÉÚÄ. 1957).\\
\textbf{óÔÅÐÁÎÏ× â.é.} ÷×ÅÄÅÎÉÅ × ÓÏ×ÒÅÍÅÎÎÕÀ ÏÐÔÉËÕ\ldots, 1989.\\[1em]
íÁËÓÉÍÁÌØÎÙÊ ÐÏÔÏË ÏÔ óÏÌÎÃÁ: 2\,ËÁÌ/(ÍÉÎ$\cdot$ÓÍ${}^2$) (0.14\,÷Ô) $\Arr$ áþô ÎÁÇÒÅÅÔÓÑ ÎÅ ×ÙÛÅ
$120^\circ$C (0.16\,÷Ô/ÓÍ$^2$). ÷ÏÓÐÌÁÍÅÎÅÎÉÅ ÄÒÅ×ÅÓÉÎÙ "--- $500\div700^\circ$C
($2\div5\,$÷Ô/ÓÍ$^2$).
\textbf{áÌØÂÅÄÏ}! $\Arr$ $20\div40\,$ÒÁÚ ×ÙÛÅ ÏÓ×ÅÝÅÎÎÏÓÔÉ ÏÔ óÏÌÎÃÁ (É ÄÅÓÑÔËÉ ÍÉÎÕÔ)! íÇÎÏ×ÅÎÎÏÅ
×ÏÓÐÌÁÍÅÎÅÎÉÅ "--- ÓÏÔÎÉ ×ÁÔÔ!
äÉÁÍÅÔÒ ÉÚÏÂÒÁÖÅÎÉÑ óÏÌÎÃÁ $d=F/127$ $\Arr$ ×ÙÉÇÒÙÛ × ÏÓ×ÅÝÅÎÎÏÓÔÉ:
$\dfrac{E}{E_0}=\bigl(\dfrac{127\cdot D}{F}\bigr)^2$ $\Arr$ Ó×ÅÔÏÓÉÌÁ ÄÌÑ 100\,÷Ô/ÓÍ$^2$:
$D/F\ge1/5$, Ô.Å. ÄÉÁÍÅÔÒ <<ÚÅÒËÁÌÁ>> ÌÉÛØ × 5 ÒÁÚ ÍÅÎØÛÅ ÒÁÓÓÔÏÑÎÉÑ!
3000 <<ÚÁÊÞÉËÏ×>> × ÏÄÎÕ ÔÏÞËÕ! îÏ ÁÌØÂÅÄÏ ÂÅÌÏÊ ËÒÁÓËÉ ÄÏ 80\%!!!
1747, ÆÒ. ÎÁÔÕÒÁÌÉÓÔ âÀÆÆÏÎ ÐÏÓÔÒÏÉÌ ÚÁÖÉÇÁÔÅÌØÎÙÊ ÐÒÉÂÏÒ ÉÚ 168 ÚÅÒËÁÌ $15\times20\,$ÓÍ (Ó
ÉÎÄÉ×ÉÄÕÁÌØÎÙÍÉ ÏÐÒÁ×ÁÍÉ). úÁ ÎÅÓËÏÌØËÏ ÍÉÎÕÔ ÎÁ ÒÁÓÓÔÏÑÎÉÉ 47\,Í ÚÁÇÏÒÅÌÁÓØ ÓÍÏÌÉÓÔÁÑ ÄÏÓËÁ (ÐÏÞÔÉ
áþô). $E/E_0=36$. \\[1em]
<<úÎÁÍÑ-2>> + <<îÏ×ÙÊ Ó×ÅÔ>>, 4 ÆÅ×ÒÁÌÑ 1993. ðÁÒÕÓ ÄÉÁÍÅÔÒÏÍ 20\,Í (ÓÅËÔÏÒÁ). äÉÁÍÅÔÒ ÐÑÔÎÁ 8ËÍ,
ÏÓ×ÅÝÅÎÎÏÓÔØ ÓÒÁ×ÎÉÍÁ Ó ÐÏÌÎÏÊ ìÕÎÏÊ.
\end{frame}
\begin{frame}{èÏÄ ÌÕÞÅÊ × ÌÉÎÚÅ}
\only<1>{éÄÅÁÌØÎÁÑ (ÔÏÎËÁÑ) ÌÉÎÚÁ. (ï ÐÁÒÁËÓÉÁÌØÎÏÊ ÏÐÔÉËÅ -- ÐÏÚÖÅ). \img[0.8]{thin_lens}}
\only<2>{ôÏÌÓÔÁÑ ÌÉÎÚÁ, ÇÌÁ×ÎÙÅ ÐÌÏÓËÏÓÔÉ É ÔÏÞËÉ. \img[0.8]{pripl}}
\end{frame}
\begin{blueframe}{ëÏÎÉÞÅÓËÉÅ ÓÅÞÅÎÉÑ}
\only<1>{\black{óÆÅÒÁ. óÆÅÒÉÞÅÓËÁÑ ÁÂÅÒÒÁÃÉÑ.}\vspace*{-1em}\img[0.7]{spherical_mirror}}
\only<2>{\black{ðÁÒÁÂÏÌÁ.}\vspace*{-1em}\img[0.62]{parabola_with_focus_and_arbitrary_line}}
\only<3>{\black{üÌÌÉÐÓ, ÇÉÐÅÒÂÏÌÁ, ÐÁÒÁÂÏÌÁ.}\img{ell_par_hyp}}
\end{blueframe}
\section{æÏÒÍÉÒÏ×ÁÎÉÅ ÉÚÏÂÒÁÖÅÎÉÊ ÌÉÎÚÁÍÉ É ÚÅÒËÁÌÁÍÉ}
\begin{blueframe}{ðÒÉÎÃÉÐ çÀÊÇÅÎÓÁ--æÒÅÎÅÌÑ}
\vspace*{-1em}
\only<1>{\begin{defin}ëÁÖÄÙÊ ÜÌÅÍÅÎÔ ×ÏÌÎÏ×ÏÇÏ ÆÒÏÎÔÁ ÍÏÖÎÏ ÒÁÓÓÍÁÔÒÉ×ÁÔØ ËÁË ÃÅÎÔÒ ×ÔÏÒÉÞÎÏÇÏ ×ÏÚÍÕÝÅÎÉÑ, ÐÏÒÏÖÄÁÀÝÅÇÏ ×ÔÏÒÉÞÎÙÅ ÓÆÅÒÉÞÅÓËÉÅ ×ÏÌÎÙ, Á ÒÅÚÕÌØÔÉÒÕÀÝÅÅ Ó×ÅÔÏ×ÏÅ ÐÏÌÅ × ËÁÖÄÏÊ ÔÏÞËÅ ÐÒÏÓÔÒÁÎÓÔ×Á ÂÕÄÅÔ ÏÐÒÅÄÅÌÑÔØÓÑ ÉÎÔÅÒÆÅÒÅÎÃÉÅÊ ÜÔÉÈ ×ÏÌÎ.\end{defin}
\begin{block}{}
çÕÓÔÁ× ëÉÒÈÇÏÆ ÐÒÉÄÁÌ ÐÒÉÎÃÉÐÕ çÀÊÇÅÎÓÁ ÓÔÒÏÇÉÊ ÍÁÔÅÍÁÔÉÞÅÓËÉÊ ×ÉÄ, ÐÏËÁÚÁ×, ÞÔÏ ÅÇÏ ÍÏÖÎÏ ÓÞÉÔÁÔØ ÐÒÉÂÌÉÖÅÎÎÏÊ ÆÏÒÍÏÊ ÔÅÏÒÅÍÙ, ÎÁÚÙ×ÁÅÍÏÊ ÉÎÔÅÇÒÁÌØÎÏÊ ÔÅÏÒÅÍÏÊ ëÉÒÈÇÏÆÁ.
æÒÏÎÔÏÍ ×ÏÌÎÙ ÔÏÞÅÞÎÏÇÏ ÉÓÔÏÞÎÉËÁ × ÏÄÎÏÒÏÄÎÏÍ ÉÚÏÔÒÏÐÎÏÍ ÐÒÏÓÔÒÁÎÓÔ×Å Ñ×ÌÑÅÔÓÑ ÓÆÅÒÁ. áÍÐÌÉÔÕÄÁ ×ÏÚÍÕÝÅÎÉÑ ×Ï ×ÓÅÈ ÔÏÞËÁÈ ÓÆÅÒÉÞÅÓËÏÇÏ ÆÒÏÎÔÁ ×ÏÌÎÙ, ÒÁÓÐÒÏÓÔÒÁÎÑÀÝÅÊÓÑ ÏÔ ÔÏÞÅÞÎÏÇÏ ÉÓÔÏÞÎÉËÁ, ÏÄÉÎÁËÏ×Á.
äÁÌØÎÅÊÛÉÍ ÏÂÏÂÝÅÎÉÅÍ É ÒÁÚ×ÉÔÉÅÍ ÐÒÉÎÃÉÐÁ çÀÊÇÅÎÓÁ Ñ×ÌÑÅÔÓÑ ÆÏÒÍÕÌÉÒÏ×ËÁ ÞÅÒÅÚ ÉÎÔÅÇÒÁÌÙ ÐÏ ÔÒÁÅËÔÏÒÉÑÍ, ÓÌÕÖÁÝÁÑ ÏÓÎÏ×ÏÊ ÓÏ×ÒÅÍÅÎÎÏÊ Ë×ÁÎÔÏ×ÏÊ ÍÅÈÁÎÉËÉ. ðÒÉÎÃÉÐ æÅÒÍÁ "--- ÎÁÉÍÅÎØÛÅÅ ×ÒÅÍÑ ÒÁÓÐÒÏÓÔÒÁÎÅÎÉÑ. ðÒÉÎÃÉÐ ÎÁÉÍÅÎØÛÅÇÏ ÄÅÊÓÔ×ÉÑ çÁÍÉÌØÔÏÎÁ.
\end{block}}
\only<2>{\black{ðÒÉÎÃÉÐ æÅÒÍÁ (ÐÒÉÎÃÉÐ ÎÁÉÍÅÎØÛÅÇÏ ×ÒÅÍÅÎÉ).}\vspace*{-1em}
\img[0.55]{Least_action_principle}}
\only<3>{\black{òÅÆÒÁËÃÉÑ~--- ÉÚÍÅÎÅÎÉÅ ÎÁÐÒÁ×ÌÅÎÉÑ Ä×ÉÖÅÎÉÑ. (òÏÔÁ ÓÏÌÄÁÔ,
ÍÑÞ).} \vspace*{-1em}\img[0.55]{Refraction_-_Huygens-Fresnel_principle}}
\only<4>{\black{äÉÆÒÁËÃÉÑ ÎÁ
ÝÅÌÉ: ËÁÖÄÁÑ ÔÏÞËÁ~--- ÉÓÔÏÞÎÉË ×ÔÏÒÉÞÎÙÈ ×ÏÌÎ.}\vspace*{-1em}
\img[0.65]{Refraction_on_an_aperture_-_Huygens-Fresnel_principle}}
\only<5>{\black{ïÐÔÉÞÅÓËÁÑ ÒÁÚÎÏÓÔØ ÈÏÄÁ. ïÇÉÂÁÀÝÁÑ ÆÏÒÍÉÒÕÅÔ ×ÏÌÎÏ×ÏÊ ÆÒÏÎÔ.}
\img[0.6]{Huygens_Refracted_Waves}}
\end{blueframe}
\begin{frame}{úÁËÏÎ óÎÅÌÌÉÕÓÁ}
\begin{defin}÷ÉÌÌÅÂÒÏÒÄ óÎÅÌÌØ (ÇÏÌÌ), ÎÁÞÁÌÏ XVII~×ÅËÁ:\hspace{1em}
$\displaystyle\frac{\sin\theta_2}{\sin\theta_1}=\frac{v_2}{v_1}=\frac{n_1}{n_2}$\end{defin}
\img[0.7]{snells_law}
(äÏ óÎÅÌÌÑ ÚÁËÏÎ ÏÐÉÓÁÌ ÐÅÒÓ. ÍÁÔÅÍÁÔÉË ÉÂÎ óÁÈÌØ, ËÏÔÏÒÙÊ Ë ÔÏÍÕ ÖÅ ÚÁÎÉÍÁÌÓÑ É ÁÓÆÅÒÉÞÅÓËÏÊ ÏÐÔÉËÏÊ)
\end{frame}
\subsection{ðÁÒÁËÓÉÁÌØÎÁÑ ÏÐÔÉËÁ}
\begin{frame}{ðÁÒÁËÓÉÁÌØÎÁÑ (ÇÁÕÓÓÏ×Á) ÏÐÔÉËÁ}
\begin{defin}\textbf{ðÁÒÁËÓÉÁÌØÎÏÅ ÐÒÉÂÌÉÖÅÎÉÅ} × ÇÅÏÍÅÔÒÉÞÅÓËÏÊ ÏÐÔÉËÅ "--- ÒÁÓÓÍÏÔÒÅÎÉÅ ÔÏÌØËÏ ÌÕÞÅÊ, ÉÄÕÝÉÈ ÐÏÄ ÍÁÌÙÍÉ ÕÇÌÁÍÉ Ë ÇÌÁ×ÎÏÊ ÏÐÔÉÞÅÓËÏÊ ÏÓÉ.\end{defin}
\begin{columns}
\column{0.4\textwidth}
\begin{block}{}
$\sin\theta\approx\theta$, $\tg\theta\approx\theta$ É $\cos\theta\approx 1$. ðÒÉÂÌÉÖÅÎÉÅ ×ÔÏÒÏÇÏ ÐÏÒÑÄËÁ (ÒÑÄ ôÅÊÌÏÒÁ): $ \cos\theta\approx 1-{\theta ^{2} \over 2}$. ïÛÉÂËÁ ÎÅ ÂÏÌÅÅ 0.5\% ×ÐÌÏÔØ ÄÏ $\theta=10^\circ$.
äÌÑ Â\'ÏÌØÛÉÈ ÕÇÌÏ× ÐÒÉÈÏÄÉÔÓÑ ÒÁÚÌÉÞÁÔØ ÍÅÒÉÄÉÏÎÁÌØÎÙÅ (ÐÌÏÓËÏÓÔØ <<ÏÓÎÏ×ÎÏÊ ÌÕÞ+ÏÐÔÉÞÅÓËÁÑ ÏÓØ>>) É ÓÁÇÇÉÔÁÌØÎÙÅ ÌÕÞÉ.
\end{block}
\column{0.6\textwidth}
\img[0.8]{saggmerid}
\end{columns}
\end{frame}
\begin{blueframe}{çÌÁ×ÎÙÅ ÐÌÏÓËÏÓÔÉ É ËÁÒÄÉÎÁÌØÎÙÅ ÔÏÞËÉ}
\vspace*{-1em}\only<1>{\begin{columns}\column{0.6\textwidth}
\begin{block}{}F/F'~-- ÐÅÒÅÄÎÑÑ É ÚÁÄÎÑÑ ÆÏËÁÌØÎÙÅ ÔÏÞËÉ; P/P'~-- ÐÅÒÅÄÎÑÑ É ÚÁÄÎÑÑ ÇÌÁ×ÎÙÅ ÔÏÞËÉ; V/V'~--ÐÅÒÅÄÎÉÊ É ÚÁÄÎÉÊ ËÒÁÑ ÐÏ×ÅÒÈÎÏÓÔÉ; H/H'~-- ÐÅÒÅÄÎÑÑ É ÚÁÄÎÑÑ ÇÌÁ×ÎÙÅ ÐÌÏÓËÏÓÔÉ.\end{block}
\img[0.8]{Lens_shapes}
\column{0.4\textwidth}
\img[0.8]{Cardinal-points-1}
\end{columns}}
\only<2>{\begin{block}{}ðÏÓÔÒÏÅÎÉÅ ÉÚÏÂÒÁÖÅÎÉÊ.\end{block}
\begin{defin}\textbf{çÌÁ×ÎÁÑ ÐÌÏÓËÏÓÔØ} "--- ËÁÖÄÁÑ ÉÚ Ä×ÕÈ ÐÌÏÓËÏÓÔÅÊ, ÐÅÒÐÅÎÄÉËÕÌÑÒÎÙÈ ÏÐÔÉÞÅÓËÏÊ ÏÓÉ ÓÉÓÔÅÍÙ, ÉÚÏÂÒÁÖÁÀÝÉÈÓÑ ÏÄÎÁ × ÄÒÕÇÏÊ Ó ÌÉÎÅÊÎÙÍ Õ×ÅÌÉÞÅÎÉÅÍ, ÒÁ×ÎÙÍ ÅÄÉÎÉÃÅ. \textbf{ëÁÒÄÉÎÁÌØÎÙÅ ÔÏÞËÉ} "--- Ä×Å ÇÌÁ×ÎÙÅ ÔÏÞËÉ É Ä×Å ÔÏÞËÉ ÆÏËÕÓÁ.\end{defin}
\img{geolens1}}
\end{blueframe}
\begin{frame}{æÏÒÍÕÌÁ ÔÏÎËÏÊ ÌÉÎÚÙ}
\only<1>{\begin{block}{}
$\displaystyle\frac1{f}=(n-1)\left[\frac1{R_1}-\frac1{R_2}+\frac{(n-1)d}{nR_1 R_2}\right]$,
× ÐÒÉÂÌÉÖÅÎÉÉ ÔÏÎËÏÊ ÌÉÎÚÙ: $\displaystyle\frac1{f}\approx(n-1)\left[\frac1{R_1}-\frac1{R_2}\right]$
\end{block}
\img[0.7]{Lens1}}
\only<2>{\begin{block}{}
$$\frac1{S_1}+\frac1{S_2}=\frac1{f}$$
\end{block}
\img[0.7]{Lens3}}
\end{frame}
\subsection{÷ÏÌÎÏ×ÁÑ ÏÐÔÉËÁ}
\begin{blueframe}{äÉÓÐÅÒÓÉÑ}\vspace*{-0.6em}
\only<1>{\begin{block}{þÉÓÌÁ áÂÂÅ (ÐÏ ÆÒÁÕÎÇÏÆÅÒÏ×ÙÍ ÌÉÎÉÑÍ)}
$$V_d = \frac{n_d-1}{n_F-n_C},\quad V_e = \frac{n_e-1}{n_{F'}-n_{C'}}$$
ðÏËÁÚÁÔÅÌØ ÞÁÓÔÎÏÊ ÄÉÓÐÅÒÓÉÉ (PgF): $Pg_F = \dfrac{n_g-n_F}{n_F-n_C}$.
d~(He) -- 587.6\,ÎÍ, F~(H${}_\beta$) -- 486.1Í, C~(H${}_\alpha$) -- 656.3\,ÎÍ,
e~(Hg) -- 546.1\,ÎÍ, F'~(Cd) -- 480.0\,ÎÍ, C'~(Cd) -- 643.9\,ÎÍ, g~(H${}_\gamma$) -- 435.8\,ÎÍ.
\end{block}\img[0.7]{CF}}
\only<2>{\begin{columns}\column{0.2\textwidth}\begin{block}{}äÉÁÇÒÁÍÍÁ
áÂÂÅ\end{block}\column{0.75\textwidth}\img[0.85]{Abbe-diagramm}\end{columns}}
\only<3>{\img{refdisp}}
\only<4>{\vspace{-1.4em}\begin{columns}\column{0.5\textwidth}
\begin{block}{óÈÅÍÁ ÏÂÒÁÚÏ×ÁÎÉÑ ÒÁÄÕÇÉ}
1)~ÓÆÅÒÉÞÅÓËÁÑ ËÁÐÌÑ\\
2)~×ÎÕÔÒÅÎÎÅÅ ÏÔÒÁÖÅÎÉÅ\\
3)~ÐÅÒ×ÉÞÎÁÑ ÒÁÄÕÇÁ\\
4)~ÐÒÅÌÏÍÌÅÎÉÅ\\
5)~×ÔÏÒÉÞÎÁÑ ÒÁÄÕÇÁ\\
6)~×ÈÏÄÑÝÉÊ ÌÕÞ Ó×ÅÔÁ\\
7)~ÈÏÄ ÌÕÞÅÊ ÐÒÉ ÆÏÒÍÉÒÏ×ÁÎÉÉ ÐÅÒ×ÉÞÎÏÊ ÒÁÄÕÇÉ\\
8)~ÈÏÄ ÌÕÞÅÊ ÐÒÉ ÆÏÒÍÉÒÏ×ÁÎÉÉ ×ÔÏÒÉÞÎÏÊ ÒÁÄÕÇÉ\\
9)~ÎÁÂÌÀÄÁÔÅÌØ\\
10)~ÏÂÌÁÓÔØ ÆÏÒÍÉÒÏ×ÁÎÉÑ ÐÅÒ×ÉÞÎÏÊ ÒÁÄÕÇÉ\\
11)~ÏÂÌÁÓÔØ ÆÏÒÍÉÒÏ×ÁÎÉÑ ×ÔÏÒÉÞÎÏÊ ÒÁÄÕÇÉ\\
12)~ÏÂÌÁËÏ ËÁÐÅÌÅË
\end{block}
\column{0.4\textwidth}
\img[0.95]{Rainbow_formation}
\end{columns}}
\end{blueframe}
\begin{frame}{éÎÔÅÒÆÅÒÅÎÃÉÑ}
\only<1,2>{\begin{defin}\textbf{éÎÔÅÒÆÅÒÅÎÃÉÑ ×ÏÌÎ} "---
×ÚÁÉÍÎÏÅ Õ×ÅÌÉÞÅÎÉÅ ÉÌÉ ÕÍÅÎØÛÅÎÉÅ ÒÅÚÕÌØÔÉÒÕÀÝÅÊ ÁÍÐÌÉÔÕÄÙ Ä×ÕÈ ÉÌÉ ÎÅÓËÏÌØËÉÈ ËÏÇÅÒÅÎÔÎÙÈ ×ÏÌÎ ÐÒÉ ÉÈ ÎÁÌÏÖÅÎÉÉ ÄÒÕÇ ÎÁ ÄÒÕÇÁ.\end{defin}}
\only<1>{\img[0.8]{interference3a}}
\only<2>{\img[0.8]{interference3}}
\only<3>{\vspace*{-1em}\begin{columns}\column{0.5\textwidth}
\begin{block}{ïÐÙÔ àÎÇÁ}
ôÏÍÁÓ àÎÇ, 1803. ûÉÒÉÎÁ ÝÅÌÅÊ ÐÒÉÂÌÉÚÉÔÅÌØÎÏ ÒÁ×ÎÁ ÄÌÉÎÅ ×ÏÌÎÙ ÉÚÌÕÞÁÅÍÏÇÏ Ó×ÅÔÁ.
äÏËÁÚÁÔÅÌØÓÔ×Ï ×ÏÌÎÏ×ÏÊ ÐÒÉÒÏÄÙ Ó×ÅÔÁ.
éÎÔÅÒÆÅÒÅÎÃÉÏÎÎÁÑ ËÁÒÔÉÎÁ ×ÏÚÎÉËÁÅÔ ÎÁ ÜËÒÁÎÅ, ËÏÇÄÁ ÛÉÒÉÎÁ ÐÒÏÒÅÚÅÊ ÂÌÉÚËÁ Ë ÄÌÉÎÅ ×ÏÌÎÙ
ÉÚÌÕÞÁÅÍÏÇÏ ÍÏÎÏÈÒÏÍÁÔÉÞÅÓËÏÇÏ Ó×ÅÔÁ. åÓÌÉ ÛÉÒÉÎÕ ÐÒÏÒÅÚÅÊ Õ×ÅÌÉÞÉ×ÁÔØ, ÔÏ ÏÓ×ÅÝÅÎÎÏÓÔØ ÜËÒÁÎÁ
ÂÕÄÅÔ ×ÏÚÒÁÓÔÁÔØ, ÎÏ ËÏÎÔÒÁÓÔ ÉÎÔÅÒÆÅÒÅÎÃÉÏÎÎÏÊ ËÁÒÔÉÎÙ ÂÕÄÅÔ ÐÁÄÁÔØ ×ÐÌÏÔØ ÄÏ ÐÏÌÎÏÇÏ Å£
ÉÓÞÅÚÎÏ×ÅÎÉÑ.
\end{block}
\column{0.45\textwidth}\img{interference4}
\end{columns}}
\end{frame}
\begin{blueframe}{äÉÆÒÁËÃÉÑ}
\only<1>{\begin{columns}
\column{0.6\textwidth}
\begin{defin}\textbf{äÉÆÒÁËÃÉÑ} "--- Ñ×ÌÅÎÉÅ, ËÏÔÏÒÏÅ ÐÒÏÑ×ÌÑÅÔ ÓÅÂÑ ËÁË ÏÔËÌÏÎÅÎÉÅ ÏÔ ÚÁËÏÎÏ× ÇÅÏÍÅÔÒÉÞÅÓËÏÊ ÏÐÔÉËÉ ÐÒÉ ÒÁÓÐÒÏÓÔÒÁÎÅÎÉÉ ×ÏÌÎ.\end{defin}
\begin{block}{}
$b\sin\phi=k\lambda$. äÉÓË üÊÒÉ: $\sin \theta_{min1} \approx 1.22 \frac{\lambda}{d} $
æÏÒÍÕÌÁ üÊÒÉ: $s''=\frac{2.76}{a}$ ($a$ × ÄÀÊÍÁÈ).
\end{block}\vspace*{-1.5em}
\img[0.7]{Airy-pattern}
\column{0.3\textwidth}\vspace{-2em}
\img[0.7]{Wave_Diffraction_4Lambda_Slit}
\vspace*{-2em}\img{diff_slit}
\end{columns}}
\only<2>{\begin{block}{}
äÉÆÒÁËÃÉÑ æÒÁÕÎÇÏÆÅÒÁ (× ÄÁÌØÎÅÊ ÚÏÎÅ):\\
$\dfrac{W^{2}}{L\lambda }\ll 1$, W~-- ÛÉÒÉÎÁ ÝÅÌÉ, $L$~--ÒÁÓÓÔÏÑÎÉÅ.
$\Phi=\dfrac{W^{2}}{L\lambda }$~-- ÞÉÓÌÏ æÒÅÎÅÌÑ.\\
äÉÆÒÁËÃÉÑ æÒÅÎÅÌÑ: $\Phi>1$.\end{block}\img[0.47]{fresnel_zones}}
\end{blueframe}
\section{áÂÅÒÒÁÃÉÉ}
\begin{blueframe}{èÒÏÍÁÔÉÞÅÓËÁÑ ÁÂÅÒÒÁÃÉÑ}
\only<1>{\img[0.85]{Chromatic_aberration_lens_diagram}}
\only<2>{\img[0.85]{achromatic}}
\only<3>{\blue{áÐÏÈÒÏÍÁÔ}\img{Apochromat}}
\end{blueframe}
\begin{blueframe}{íÏÎÏÈÒÏÍÁÔÉÞÅÓËÉÅ ÁÂÅÒÒÁÃÉÉ}
\only<1>{\begin{columns}\column{0.55\textwidth}\blue{óÆÅÒÉÞÅÓËÁÑ ÁÂÅÒÒÁÃÉÑ, $\propto(D/F)^3$}
\img{Spherical_aberration_1}
\column{0.4\textwidth}\img{Spherical_aberration_2}\end{columns}}
\only<2>{\vspace*{-0.5em}\blue{ëÏÍÁ, $\propto(D/F)^2$}\vspace*{-0.5em}\img[0.8]{Lens-coma}}
\only<3>{\vspace*{-0.5em}\blue{áÓÔÉÇÍÁÔÉÚÍ,
$\propto(D/F)$}\vspace*{-0.5em}\img[0.9]{meridional-sagittal-planes}}
\only<4>{\vspace*{-0.5em}\blue{äÉÓÔÏÒÓÉÑ}\vspace*{-0.5em}\img[0.95]{distortion}}
\only<5>{\blue{ëÒÉ×ÉÚÎÁ ÐÏÌÑ "--- ÆÏËÁÌØÎÁÑ ÐÌÏÓËÏÓÔØ <<ëÅÐÌÅÒÁ>>}\\
\igh{Field_curvature}\igh{Keplerspacecraft-FocalPlane-cutout}}
\end{blueframe}
\subsection{éÚÍÅÒÅÎÉÅ ÁÂÅÒÒÁÃÉÊ}
\begin{frame}{ôÅÓÔ æÕËÏ}
\only<1>{\cols{\col{0.65}
\begin{block}{}
1858, L\'eon Foucault. éÚÎÁÞÁÌØÎÏ "--- ÉÚ ÃÅÎÔÒÁ ËÒÉ×ÉÚÎÙ ÚÅÒËÁÌÁ ÐÒÉ ÅÇÏ ÛÌÉÆÏ×ÁÎÉÉ.
\end{block}\img{Foucault-Test_1}
\col{0.25}\img{Foucault_test}}}
\only<2>{\vspace*{-1em}\img[0.5]{BTAf}}
\end{frame}
\begin{frame}{íÅÔÏÄ çÁÒÔÍÁÎÎÁ}
\only<1>{\vspace*{-0.5em}óÕÔØ ÍÅÔÏÄÉËÉ \vspace*{-0.5em}\img[0.73]{hartmann}}
\only<2>{\vspace*{-0.5em}üËÒÁÎ 3.5-Í ÔÅÌÅÓËÏÐÁ (WIYN, ëÉÔÔ-ðÉË)
\vspace*{-0.5em}\img[0.7]{WIYN_HartmanScreen_10-91_b}}
\only<3>{\vspace*{-0.5em}üËÒÁÎ âôá \vspace*{-0.5em}\img[0.9]{BTA_hartm}}
\only<4>{\vspace*{-0.5em}\vbox to 0pt{÷ÏÌÎÏ×ÏÊ ÆÒÏÎÔ}\vspace*{-0.5em}
\img[0.5]{mirr_BTA_h}}
\end{frame}
\begin{frame}{ðÏÌÉÎÏÍÙ ãÅÒÎÉËÅ}
\only<1>{\begin{block}{}þÅÔÎÙÅ ÐÏÌÉÎÏÍÙ ãÅÒÎÉËÅ:
$Z_n^m(\rho, \varphi)=R_n^m(\rho )\,\cos(m\varphi)$,\\
îÅÞÅÔÎÙÅ:
$Z_n^{-m}(\rho, \varphi)=R_n^m(\rho)\,\sin(m\,\varphi)$,\\
ÇÄÅ $m$ É $n$~-- ÐÏÌÏÖÉÔÅÌØÎÙÅ ÃÅÌÙÅ, $n\ge m$;\\
$\varphi$~-- ÕÇÌÏ×ÁÑ ËÏÏÒÄÉÎÁÔÁ;
$\rho$~-- ÒÁÄÉÕÓ-×ÅËÔÏÒ ($0\le\rho\le1$);
$R^m_n$~-- ÒÁÄÉÁÌØÎÙÅ ÐÏÌÉÎÏÍÙ.\\
ðÏÌÉÎÏÍÙ ãÅÒÎÉËÅ ÏÒÔÏÎÏÒÍÁÌØÎÙ, $|Z_n^m(\rho, \varphi)|\leq 1$.\\
$\displaystyle R^m(\rho)=\sum_{k=0}^{\tfrac{n-m}{2}}\frac{(-1)^{k}\,(n-k)!}{k!\left(\tfrac
{n+m}{2}-k\right)!\left(\tfrac {n-m}{2}-k\right)!}\;\rho^{n-2\,k}$ ÄÌÑ ÞÅÔÎÙÈ $n-m$,\\
$R_n^m\equiv 0$ ÄÌÑ ÎÅÞÅÔÎÙÈ $n-m$.
\end{block}
}
\only<2>{\begin{columns}\column{0.6\textwidth}
\begin{table}\begin{tabular}{|c|c|c|}\hline
\bf Z& $\mathbf{Z_j}$ & \bf Name \\\hline
$Z_0^0$ & 1& óÍÅÝÅÎÉÅ \\\hline
$Z_1^{-1}$ & $2\rho\sin\varphi$ & ÷ÅÒÔÉËÁÌØÎÙÊ ÎÁËÌÏÎ \\\hline
$Z_1^1$ & $2\rho\cos\varphi$ & çÏÒÉÚÏÎÔÁÌØÎÙÊ ÎÁËÌÏÎ \\\hline
$Z_2^{-2}$ & $\sqrt6\rho^2\sin2\varphi$ & áÓÔÉÇÍÁÔÉÚÍ (ËÏÓÏÊ)\\\hline
$Z_2^{0}$ & $\sqrt3(2\rho^2-1)$ & äÅÆÏËÕÓ\\\hline
$Z_3^{-1}$ & $\sqrt8(3\rho^3-2\rho)\sin\varphi$ & ÷ÅÒÔÉËÁÌØÎÁÑ ËÏÍÁ\\\hline
$Z_3^1$ & $\sqrt8(3\rho^3-2\rho)\cos\varphi$ & çÏÒÉÚÏÎÔÁÌØÎÁÑ ËÏÍÁ\\\hline
$Z_4^0$ & $\sqrt5(6\rho^4-6\rho^2+1)$ & óÆÅÒÉÞÅÓËÁÑ ÁÂÅÒÒÁÃÉÑ\\\hline
\end{tabular}\end{table}
\column{0.37\textwidth}\img{Zernike_polynomials2}
\end{columns}}
\end{frame}
\begin{frame}{íÅÔÏÄ ûÁËÁ-çÁÒÔÍÁÎÎÁ}
\only<1>{\img[0.83]{shag}}
\only<2,3,4>{\begin{columns}\column{0.48\textwidth}
\begin{block}{ûÁË-çÁÒÔÍÁÎÎ ÎÁ âôá}
ïïï <<÷ÉÚÉÏÎÉËÁ>>, éðìéô òáî.
ðÒÉÍÅÎÑÅÔÓÑ Ó 2015 ÇÏÄÁ.\\
éÍÅÅÔ ÂÏÌÅÅ ×ÙÓÏËÏÅ ÒÁÚÒÅÛÅÎÉÅ.\\
åÄÉÎÓÔ×ÅÎÎÙÊ ÄÏÓÔÕÐÎÙÊ ÄÌÑ âôá ÍÅÔÏÄ.\\
òÁÓÔÒ $60\times60$ APO-Q-P1000-F40 ($61\times61\,$ÍÍ).
\end{block}
\column{0.5\textwidth}
\only<2>{\img{mlm_MonolithicLensletModule}}
\only<3>{\img[0.7]{SHA_BTA}}
\only<4>{\img[0.7]{favaris01}}\end{columns}}
\end{frame}
\begin{frame}{íÅÔÏÄ òÏÄÄØÅ}
\img[0.65]{Roddiergrab}
\end{frame}
\begin{frame}{Zemax}
\vspace*{-1em}
\only<1>{\img[0.7]{mirr_Coma}}
\only<2>{\img[0.7]{fft-mtf}}
\only<3>{\img[0.7]{matrix-spot}}
\only<4>{\img[0.7]{ray-fan}}
\end{frame}
\section{ôÅÌÅÓËÏÐÙ}
\subsection{òÅÆÒÁËÔÏÒÙ}
\begin{frame}{òÅÆÒÁËÔÏÒÙ}
\only<1>{çÁÌÉÌÅÑ\vspace*{-1.5em}\img[0.42]{galileoscopes}\vspace*{-1em}\img[0.42]{galileo_rays}}
\only<2>{ëÅÐÌÅÒÁ\vspace*{-2em}\img[0.8]{keplerian_ray}}
\only<3>{ñÎÁ çÅ×ÅÌÉÑ (1641, 46Í ÆÏËÕÓ)\\\vspace*{-0.4em}\img[0.52]{hevelius_scope}}
\only<4>{\begin{columns}\column{0.55\textwidth}
\vspace{-1em}\img[0.7]{Huygens_broths_scope}
\column{0.35\textwidth}\begin{block}{}
çÀÊÇÅÎÓÁ (×ÔÏÒÁÑ ÐÏÌÏ×ÉÎÁ XVII~×ÅËÁ, 37Í)\\
1655 "--- ËÏÌØÃÁ óÁÔÕÒÎÁ, ôÉÔÁÎ;\\
1657 "--- ÍÁÑÔÎÉËÏ×ÙÅ ÞÁÓÙ;\\
1659 "--- ÔÕÍÁÎÎÏÓÔØ ïÒÉÏÎÁ;\\
1675 "--- ÞÁÓÏ×ÁÑ ÓÐÉÒÁÌØ.
\end{block}\end{columns}}
\only<5>{Francois Deloncle, 1.25Í "--- ÐÁÒÉÖÓËÁÑ ×ÙÓÔÁ×ËÁ 1900\,Ç,
$F=57\,$Í.\img[0.6]{Great_Ex_Telescope_Telescope}}
\end{frame}
\subsection{òÅÆÌÅËÔÏÒÙ}
\begin{blueframe}{òÅÆÌÅËÔÏÒÙ}
\only<1>{\begin{columns}
\column{0.49\textwidth}\img{NewtonsTelescopeReplica}
\column{0.49\textwidth}\begin{block}{}îØÀÔÏÎÁ (1668)\end{block}\img{Newtonian_telescope}
\end{columns}}
\only<2>{\begin{columns}\column{0.49\textwidth}\img{early-herschel-40ft}
\column{0.49\textwidth}\begin{block}{}çÅÒÛÅÌÑ--ìÏÍÏÎÏÓÏ×Á (1772/1762)\end{block}
\img{Herschel-Lomonosov_reflecting_telescope}
\end{columns}}
\only<3>{\begin{columns}\column{0.49\textwidth}\img{Gregorian_telescope}
\column{0.49\textwidth}
\begin{block}{}çÒÅÇÏÒÉ (ÐÒÅÄÌÏÖÅÎÁ, ÎÏ ÎÅ ÐÏÓÔÒÏÅÎÁ × 1663: ÐÁÒÁÂÏÌÁ +
ÜÌÌÉÐÓ)\end{block}
\img{Gregorian_telescopes}\end{columns}}
\only<4>{\begin{block}{}ëÁÓÓÅÇÒÅÎÁ (1672, ×ÁÒÉÁÃÉÑ "--- òÉÔÞÉ--ËÒÅÔØÅÎ, 1910, 2
ÇÉÐÅÒÂÏÌÙ)\end{block}
\img{Cassegrain_telescope}}
\only<5>{\begin{block}{}ûÍÉÄÔ--ëÁÓÓÅÇÒÅÎ (1950-Å "--- ÇÉÇÁÎÔÓËÉÅ ÒÁÚÍÅÒÙ
ÐÏÌÑ)\end{block}\img[0.9]{schmidt}}
\end{blueframe}
\section{ïÓÎÏ×ÎÙÅ ÈÁÒÁËÔÅÒÉÓÔÉËÉ ÔÅÌÅÓËÏÐÏ×}
\begin{frame}{ïÓÎÏ×ÎÙÅ ÈÁÒÁËÔÅÒÉÓÔÉËÉ ÔÅÌÅÓËÏÐÏ×}
\vspace*{-1em}
\begin{columns}\column{0.6\textwidth}
\begin{block}{}
\textbf{òÁÚÒÅÛÅÎÉÅ} $\theta =1.220\dfrac\lambda{D}=\dfrac{16.4}{D}$ $''/$ÓÍ ÄÌÑ 650\,ÎÍ.\\
\textbf{õÇÌÏ×ÏÅ Õ×ÅÌÉÞÅÎÉÅ} $\Gamma=\dfrac{F}{f}$, ÍÉÎÉÍÁÌØÎÏÅ: $\Gamma=\dfrac{D}{D_{ep}}$.\\
\textbf{ðÏÌÅ ÚÒÅÎÉÑ} $\omega=\dfrac\Omega\Gamma$ ($\Omega$~-- ÐÏÌÅ ÚÒÅÎÉÑ ÏËÕÌÑÒÁ).\\
\textbf{ó×ÅÔÏÓÉÌÁ} $A=\dfrac{D}{F}$, ÏÐÒÅÄÅÌÑÅÔ ÏÓ×ÅÝÅÎÎÏÓÔØ × ÆÏËÁÌØÎÏÊ ÐÌÏÓËÏÓÔÉ.\\
\textbf{ïÔÎÏÓÉÔÅÌØÎÏÅ ÏÔ×ÅÒÓÔÉÅ} $F\#=1/A=F/D$.\\
\textbf{ðÒÏÎÉÃÁÀÝÁÑ ÓÉÌÁ} $m$~-- ÎÁÉÂÏÌÅÅ ÓÌÁÂÙÅ Ú×ÅÚÄÙ (× ÚÅÎÉÔÅ) ÎÁÄ ÆÏÎÏÍ.\\
\textbf{íÁÓÛÔÁÂ} $u=\dfrac {206265}{F}''/$ÍÍ.
\end{block}
\column{0.33\textwidth}
\img{Airy_disk_spacing_near_Rayleigh_criterion}
\end{columns}
\end{frame}
\begin{frame}{íÁÓËÁ âÁÈÔÉÎÏ×Á}
\only<1>{\img[0.5]{Bahtinov_mask}}
\only<2>{\img[0.9]{Bahtinov_mask_example}}
\end{frame}
\begin{frame}{ðÒÅÉÍÕÝÅÓÔ×Á ÒÅÆÌÅËÔÏÒÏ× ÎÁÄ ÒÅÆÒÁËÔÏÒÁÍÉ}
\vspace*{-1em}
\begin{columns}
\column{0.5\textwidth}
\begin{block}{òÅÆÌÅËÔÏÒ}
îÅÔ ÈÒÏÍÁÔÉÞÅÓËÏÊ ÁÂÅÒÒÁÃÉÉ.\\
óÔÏÉÍÏÓÔØ ÎÉÖÅ.\\
ôÒÕÂÁ ËÏÍÐÁËÔÎÅÊ.\\
ðÏÌÉÒÏ×ÁÔØ ÔÏÌØËÏ ÏÄÎÕ ÐÏ×ÅÒÈÎÏÓÔØ.\\
ðÏÓÁÄËÁ ÐÏ ×ÓÅÊ ÐÌÏÝÁÄÉ ÚÅÒËÁÌÁ.\\
ïÓÎÏ×ÎÁÑ ÍÁÓÓÁ ×ÎÉÚÕ ÔÒÕÂÙ.\\
\end{block}
\begin{block}{òÅÆÒÁËÔÏÒ}
îÅÔ ÄÉÆÒÁËÃÉÏÎÎÏÇÏ ËÒÅÓÔÁ ÏÔ ÒÁÓÔÑÖÅË.\\
îÅ ÎÁÄÏ ÐÅÒÅÁÌÀÍÉÎÉÒÏ×ÁÔØ.\\
îÅ ÎÕÖÎÁ ËÏÌÌÉÍÁÃÉÑ ÜÌÅÍÅÎÔÏ×.\\
úÁËÒÙÔÁÑ ÔÒÕÂÁ "--- ÍÅÎØÛÅ ÇÒÑÚÉ.\\
\end{block}
\column{0.4\textwidth}\img[0.9]{refrVSrefl}
\end{columns}
\end{frame}
\section{íÏÎÔÉÒÏ×ËÁ ÔÅÌÅÓËÏÐÁ}
\begin{frame}{üË×ÁÔÏÒÉÁÌØÎÁÑ ÍÏÎÔÉÒÏ×ËÁ}
\only<1>{\begin{columns}
\column{0.6\textwidth}\vspace*{-1.4em}\img[0.75]{fraunh_tel}
\column{0.4\textwidth}\begin{block}{1824, êÏÚÅÆ ÆÏÎ æÒÁÕÎÇÏÆÅÒ}
ôÅÌÅÓËÏÐ ÏÂÓÅÒ×ÁÔÏÒÉÉ ôÁÒÔÕ. çÅÒÍÁÎÓËÁÑ ÍÏÎÔÉÒÏ×ËÁ.
÷ 1853 Ç. àÓÔÕÓ ÆÏÎ ìÉÂÉÈ ÐÒÅÄÌÏÖÉÌ ÍÅÔÏÄ ×ÙÄÅÌÅÎÉÑ ÍÅÔÁÌÌÉÞÅÓËÏÇÏ ÓÅÒÅÂÒÁ ÉÚ ÒÁÓÔ×ÏÒÁ
ÎÉÔÒÁÔÁ ÓÅÒÅÂÒÁ ÄÌÑ ÓÅÒÅÂÒÅÎÉÑ ÓÔÅËÌÁ. ÷ 1856-57~ÇÇ. ëÁÒÌ á×ÇÕÓÔ ÆÏÎ ûÔÁÊÎÈÅÊÌØ É ìÅÏÎ
æÕËÏ
(ÎÅÚÁ×ÉÓÉÍÏ) ×ÐÅÒ×ÙÅ ÉÓÐÏÌØÚÏ×ÁÌÉ ÜÔÏÔ ÍÅÔÏÄ.
\end{block}\end{columns}}
\only<2>{\begin{columns}
\column{0.5\textwidth}\vspace*{-1.4em}
\img[0.8]{100_inch_Hooker_Telescope}
\column{0.4\textwidth}
\begin{block}{ôÅÌÅÓËÏÐ èÕËÅÒÁ}
100 ÄÀÊÍÏ×, 1917~Ç. áÎÇÌÉÊÓËÁÑ ÍÏÎÔÉÒÏ×ËÁ <<Ó ÑÒÍÏÍ>>.
ïÂÓÅÒ×ÁÔÏÒÉÑ íÁÕÎÔ ÷ÉÌÓÏÎ.
ëÒÕÐÎÅÊÛÉÊ ÄÏ 1949~Ç.
÷ 1935~Ç. ÓÅÒÅÂÒÑÎÏÅ ÐÏËÒÙÔÉÅ ÓÍÅÎÅÎÏ ÁÌÀÍÉÎÉÅ×ÙÍ (äÖÏÎ äÏÎÁ×ÁÎ
óÔÒÏÎÇ, ËÁÌÔÅÈ, 1932~Ç.).\end{block}\end{columns}}
\end{frame}
\begin{frame}{áÌØÔ-ÁÚÉÍÕÔÁÌØÎÁÑ ÍÏÎÔÉÒÏ×ËÁ}
\img[0.7]{bta_telescope}
\end{frame}
\begin{frame}{áÌØÔ-ÁÌØÔ}
\begin{columns}
\column{0.6\textwidth}\img{Baker-Nunn_camera_001}\column{0.38\textwidth}
\begin{block}{Baker--Nunn camera}
ïÔÓÕÔÓÔ×ÕÅÔ <<ÓÌÅÐÁÑ ÚÏÎÁ>> ÏËÏÌÏ ÚÅÎÉÔÁ. þÁÓÔÏ ×ËÌÀÞÁÅÔ ÁÚÉÍÕÔÁÌØÎÕÀ ÏÓØ.\\[1em]
üË×ÁÔÏÒÉÁÌØÎÁÑ "--- ÎÅ×ÏÚÍÏÖÎÏ ÒÁÚÇÒÕÚÉÔØ ÂÏÌØÛÏÅ ÚÅÒËÁÌÏ, ÏÞÅÎØ ÍÁÓÓÉ×ÎÁÑ ËÏÎÓÔÒÕËÃÉÑ, Õ ÎÅËÏÔÏÒÙÈ
ÔÉÐÏ× ÅÓÔØ <<ÓÌÅÐÁÑ ÚÏÎÁ>> Õ ÐÏÌÀÓÁ.\\[1em]
áÌØÔ--ÁÚÉÍÕÔÁÌØÎÁÑ "--- ×ÒÁÝÅÎÉÅ ÐÏÌÑ, <<ÓÌÅÐÁÑ ÚÏÎÁ>>, ÓÌÏÖÎÏÅ ÕÐÒÁ×ÌÅÎÉÅ, ÎÏ ÐÒÏÓÔÁÑ ÍÅÈÁÎÉËÁ.
\end{block}\end{columns}
\end{frame}
\begin{frame}{ïÄÎÏ- É ÍÎÏÇÏÜÌÅÍÅÎÔÎÙÅ ÉÎÓÔÒÕÍÅÎÔÙ}
\only<1>{\vspace*{-0.5em}ðÁÓÓÉ×ÎÙÅ ÒÁÚÇÒÕÚËÉ âôá.\vspace*{-0.5em}\img[0.9]{btamir0}}
\only<2>{\vspace*{-0.5em}áËÔÉ×ÎÁÑ ÒÁÚÇÒÕÚËÁ 1-Í ÚÅÒËÁÌÁ ESO (1987, NTT)
\vspace*{-0.5em}\img[0.8]{1-m}}
\only<3>{\vspace*{-0.5em}âÏÌØÛÏÊ íÁÇÅÌÌÁÎÏ× ôÅÌÅÓËÏÐ (GMT, ìÁÓ-ëÁÍÐÁÎÁÓ, þÉÌÉ).
\vspace*{-0.5em}\img[0.8]{GMT-3}}
\only<4>{\vspace*{-0.5em}ãÅÎÔÒÁÌØÎÏÅ ÚÅÒËÁÌÏ GMT.
\vspace*{-0.5em}\img[0.8]{gmt_Central}}
\only<5>{\vspace*{-1em}\img[0.8]{Telescope-mount-detail}}
\only<6>{\vspace*{-0.5em}39-Í ÔÅÌÅÓËÏÐ E-ELT (ÇÏÒÁ áÒÍÁÓÏÎÅÓ, þÉÌÉ).
\vspace*{-0.5em}\img[0.8]{AAS-TMT-calendar-800}}
\only<7>{\vspace*{-0.5em}óÅÇÍÅÎÔÙ E-ELT (798 ÓÅÇÍÅÎÔÏ× ÐÏ 1.45\,Í)
\vspace*{-0.5em}\img[0.8]{eelt_seg}}
\only<8>{\vspace*{-0.5em}óÅÇÍÅÎÔÙ Keck
\vspace*{-0.3em}\img[0.8]{keck_segment}}
\end{frame}
\section{óÈÏÄÓÔ×Á É ÒÁÚÌÉÞÉÑ ÏÐÔÉÞÅÓËÉÈ É ÒÁÄÉÏÔÅÌÅÓËÏÐÏ×}
\begin{blueframe}{óÈÏÄÓÔ×Á É ÒÁÚÌÉÞÉÑ ÏÐÔÉÞÅÓËÉÈ É ÒÁÄÉÏÔÅÌÅÓËÏÐÏ×}
\begin{block}{}\textbf{ïÂÝÉÅ ÞÅÒÔÙ}: ËÏÎÃÅÎÔÒÁÃÉÑ ÐÁÄÁÀÝÅÇÏ ÉÚÌÕÞÅÎÉÑ × ÆÏËÁÌØÎÏÊ ÐÌÏÓËÏÓÔÉ.\\
\textbf{òÁÚÎÏÅ}: ÄÌÉÎÁ ×ÏÌÎÙ $\Arr$ ÍÁÔÅÒÉÁÌ É ËÁÞÅÓÔ×Ï ÐÏ×ÅÒÈÎÏÓÔÉ; ÒÁÚÎÙÅ ÕÓÌÏ×ÉÑ ÎÁÂÌÀÄÅÎÉÊ
(ÒÁÄÉÏ×ÏÌÎÙ ÐÒÏÈÏÄÑÔ ÓË×ÏÚØ ÏÂÌÁËÁ); ÒÁÚÎÙÅ ÚÁÄÁÞÉ (ÆÉÚÉÞÅÓËÉÅ ÕÓÌÏ×ÉÑ, ×ÙÚ×Á×ÛÉÅ ÉÚÌÕÞÅÎÉÅ;
ÐÏÇÌÏÝÅÎÉÅ ÍÅÖÚ×ÅÚÄÎÏÊ ÓÒÅÄÏÊ É Ô.Ð.; ÒÁÚÌÉÞÉÅ ÍÅÔÏÄÏ× ÉÎÔÅÒÆÅÒÏÍÅÔÒÉÉ).
\end{block}\img[0.6]{EM_Spectrum_Properties_edit}
\end{blueframe}
\begin{frame}{éÎÔÅÒÆÅÒÏÍÅÔÒÉÑ}
\vspace*{-1em}
\only<1>{\begin{block}{}\textbf{áÓÔÒÏÎÏÍÉÞÅÓËÉÊ ÉÎÔÅÒÆÅÒÏÍÅÔÒ} ~--- ÓÏ×ÏËÕÐÎÏÓÔØ ÏÔÄÅÌØÎÙÈ
ÔÅÌÅÓËÏÐÏ×, ÓÅÇÍÅÎÔÏ× ÚÅÒËÁÌ ÉÌÉ ÁÎÔÅÎÎ, ÆÏÒÍÉÒÕÀÝÉÈ ÅÄÉÎÏÅ ÃÅÌÏÅ ÄÌÑ ÐÏ×ÙÛÅÎÉÑ ÕÇÌÏ×ÏÇÏ ÒÁÚÒÅÛÅÎÉÑ.
ðÏÌÕÞÅÎÉÅ ×ÙÓÏËÉÈ ÒÁÚÒÅÛÅÎÉÊ ÎÁ ÍÁÌÙÈ ÔÅÌÅÓËÏÐÁÈ.\end{block}
\img[0.85]{Interferometer}}
\only<2>{\img[0.7]{keck_inter}}
\only<3>{\img[0.8]{keck}}
\only<4>{\vspace*{-0.5em}\vbox to 0pt{VLT.}\vspace*{-0.5em}\img[0.5]{VLT_inter}}
\end{frame}
\begin{blueframe}{}
\begin{columns}\column{0.5\textwidth}\img[0.8]{Astronomical_interferometer_line_geometry}
\column{0.48\textwidth}
\begin{block}{}òÁÚÒÅÛÅÎÉÅ (ÄÏ $0.001^m$) ËÏÍÐÏÎÅÎÔ Ä×ÏÊÎÙÈ Ú×ÅÚÄ, ÐÏÉÓË ÜËÚÏÐÌÁÎÅÔ. éÚÍÅÒÅÎÉÅ
Ä×ÉÖÅÎÉÑ Ú×ÅÚÄ (ÓÄ×ÉÇÉ ÐÏÌÏÓ) ÉÌÉ ÎÅÐÏÓÒÅÄÓÔ×ÅÎÎÏ ÐÌÁÎÅÔ (<<ÏÂÎÕÌÑÀÝÁÑ>> ÉÎÔÅÒÆÅÒÏÍÅÔÒÉÑ,
Keck).
\end{block}\end{columns}
\end{blueframe}
\begin{frame}{òÁÄÉÏÉÎÔÅÒÆÅÒÏÍÅÔÒÉÑ}
\vspace*{-1em}
\begin{columns}
\column{0.5\textwidth}\img{cross_cor}\column{0.48\textwidth}
\begin{block}{ó×ÅÒÈÄÌÉÎÎÁÑ ÂÁÚÁ}òóäâ--ÉÎÔÅÒÆÅÒÏÍÅÔÒ. äÁÎÎÙÅ ÓÏÂÉÒÁÀÔÓÑ ÎÅÚÁ×ÉÓÉÍÏ. äÁÌÅÅ
ÏÓÕÝÅÓÔ×ÌÑÅÔÓÑ ËÏÒÒÅÌÑÃÉÏÎÎÁÑ ÏÂÒÁÂÏÔËÁ. ë×ÁÚÁÒ--ë÷ï (ËÏÏÒÄÉÎÁÔÎÏ-×ÒÅÍÅÎÎÏÅ ÏÂÅÓÐÅÞÅÎÉÅ).
\end{block}\end{columns}\img[0.6]{quasar}
\end{frame}
\section{çÒÁÎÉÃÙ ×ÏÚÍÏÖÎÏÓÔÅÊ ÎÁÚÅÍÎÙÈ ÉÎÓÔÒÕÍÅÎÔÏ×}
\begin{blueframe}{úÅÍÎÁÑ ÁÔÍÏÓÆÅÒÁ}
\begin{block}{}
îÁÚÅÍÎÁÑ ÁÓÔÒÏÆÉÚÉËÁ ÓÉÌØÎÏ ÓÖÁÔÁ × ÓÐÅËÔÒÁÌØÎÏÍ ÄÉÁÐÁÚÏÎÅ ÚÅÍÎÏÊ ÁÔÍÏÓÆÅÒÏÊ.
\end{block}
\img[0.95]{Atmospheric_electromagnetic_opacity}
\end{blueframe}
\begin{frame}{ëÁÞÅÓÔ×Ï ÉÚÏÂÒÁÖÅÎÉÑ (seeing)}
\begin{columns}
\column{0.49\textwidth}\vspace{-2em}\begin{block}{}
\small\begin{itemize}
\item ðÏÌÕÛÉÒÉÎÁ (FWHM) ÉÚÏÂÒÁÖÅÎÉÑ Ú×ÅÚÄÙ.
\item $r_0$ (ÔÉÐÉÞÎÙÊ ÒÁÚÍÅÒ ÎÅÏÄÎÏÒÏÄÎÏÓÔÉ "--- ÐÁÒÁÍÅÔÒ æÒÉÄÁ) É $t_0$ (<<×ÒÅÍÑ ÚÁÍÏÒÏÚËÉ>>).
\item ðÒÏÆÉÌØ $C_{N^2}$ (ÍÏÖÅÔ ÉÚÍÅÒÑÔØÓÑ ÎÁÐÒÑÍÕÀ, ÎÁÐÒ. MASS~--Multi Aperture Scintillation
Sensor).
\end{itemize}
\end{block}\vspace{-1em}\img[0.85]{seeing3}\vspace*{-1em}
{\small îÁÉÌÕÞÛÅÅ ÍÅÓÔÏ "--- ÇÏÒÙ ÐÏÓÒÅÄÉ ÏËÅÁÎÁ.}
\column{0.49\textwidth}\vspace{-1em}\begin{block}{}\small
÷ÁÒÉÁÃÉÑ ÆÁÚÙ ÷æ ÎÁ ×ÈÏÄÎÏÊ ÁÐÅÒÔÕÒÅ: $\sigma^2=1.0299\bigl(\dfrac{d}{r_0}\bigr)^{5/3}$.\\
$$r_0=\left(\frac{16.7\lambda^{-2}}{\cos Z}\int_0^\infty
C_{N}^2(h)\,dh\right)^{-3/5}$$
\end{block}\vspace{-1em}\img[0.65]{mass_idea}
\end{columns}
\end{frame}
\section{ëÏÍÐÅÎÓÁÃÉÑ ×ÌÉÑÎÉÑ ÁÔÍÏÓÆÅÒÙ}
\begin{frame}{Tip-tilt ËÏÒÒÅËÃÉÑ}
\img{bta_N2_prefocal}
\end{frame}
\def\FT#1{\mathcal{F}(#1)}
\begin{frame}{óÐÅËÌ--ÉÎÔÅÒÆÅÒÏÍÅÔÒÉÑ}
\only<1>{\img[0.95]{speckles}}
\only<2>{\begin{columns}\column{0.5\textwidth}\begin{block}{}
1970, Antoine Labeyrie "--- ÍÁÔÅÍÁÔÉÞÅÓËÉÅ ÏÓÎÏ×Ù óé (ÍÅÔÏÄÙ æÕÒØÅ-ÁÎÁÌÉÚÁ).\\
\textbf{óÐÅËÔÒ ÍÏÝÎÏÓÔÉ}~-- âðæ ÐÏÌÕÉÎ×ÁÒÉÁÎÔÁ 2 ÐÏÒÑÄËÁ (ÎÁÐÒ. Á×ÔÏËÏÒÒÅÌÑÃÉÉ).
\textbf{âÉÓÐÅËÔÒ}~-- âðæ ÐÏÌÕÉÎ×ÁÒÉÁÎÔÁ 3 ÐÏÒÑÄËÁ. ôÅÏÒÅÍÁ Ó×ÅÒÔËÉ:
$\FT{f*g}=\FT{f}\cdot\FT{g}$ $\Arr$ ÂÉÓÐÅËÔÒ
$B(f_1,f_2)=\mathcal{F}^{*}(f_1+f_2)\cdot\FT{f_1}\cdot\FT{f_2}$.
\end{block}\column{0.48\textwidth}
\img{WR_speckle_restored}\end{columns}}
\end{frame}
\begin{blueframe}{áÄÁÐÔÉ×ÎÁÑ ÏÐÔÉËÁ}
\vspace*{-0.5em}
\only<1>{\begin{block}{}
Horace W. Babcock, 1953 "--- ÔÅÏÒÉÑ áï. âÕÒÎÏÅ ÒÁÚ×ÉÔÉÅ × 90-È × ÒÁÍËÁÈ ÈÏÌÏÄÎÏÊ ×ÏÊÎÙ.
éÓËÕÓÓÔ×ÅÎÎÁÑ Ú×ÅÚÄÁ, tip-tilt ÚÅÒËÁÌÏ, ÄÅÆÏÒÍÉÒÕÅÍÏÅ ÚÅÒËÁÌÏ, ÄÅÌÉÔÅÌØ ÐÕÞËÁ, ÄÁÔÞÉË ×ÏÌÎÏ×ÏÇÏ
ÆÒÏÎÔÁ.
\end{block}\vspace*{-0.5em}\img[0.7]{Adaptive_optics_system_full}}
\only<2>{\begin{columns}\column{0.5\textwidth}\img{VLTdefmir}
\column{0.5\textwidth}\img{Ferrofluid_Deformable_mirror}\end{columns}}
\only<3>{\begin{block}{}
$30\div60\,$mas. éÓËÕÓÓÔ×ÅÎÎÙÅ Ú×ÅÚÄÙ: Ú×ÅÚÄÙ òÜÌÅÑ (ÂÌÉÖÎÉÊ éë, $15\div25$~ËÍ) É
ÎÁÔÒÉÅ×ÙÅ ($80\div100$~ËÍ, 589~ÎÍ).
\end{block}\vspace*{-0.5em}
\img[0.83]{cfht_adaptive_optics}\vspace*{-1em}\textcolor{black}{ôÏÌØËÏ ÄÌÑ ÑÒËÉÈ ÏÂßÅËÔÏ×!}}
\only<4>{\img[0.8]{VLT_artif_star}}
\end{blueframe}
\begin{frame}{Lucky-imaging, Superresolution}
\smimg[0.33]{Lucky_Single_Exposure_Strehl_16Percent}\hfil
\smimg[0.33]{Lucky_sum_all}\hfil
\smimg[0.33]{Lucky_best_1percent_averaging}
\begin{block}{}
ëÕÂ ÄÁÎÎÙÈ Ó ÜËÓÐÏÚÉÃÉÑÍÉ $10\div50\,$ÍÓ.
óÏ×ÍÅÝÅÎÉÅ ÓÎÉÍËÏ× Ó ÎÁÉÍÅÎØÛÉÍ ÞÉÓÌÏÍ ûÔÒÅÌÑ.
õÓÒÅÄÎÅÎÉÅ.
éÔÏÇ: ÂÙÌÏ 900\,mas, ÓÔÁÌÏ 40!
äÌÑ ÍÁÌÙÈ ÔÅÌÅÓËÏÐÏ× ($D\le r_0$) ÜÔÏ Superresolution.
\end{block}
\end{frame}
\begin{frame}{}
\vspace*{-0.5em}\img[0.63]{optelcomp}
\end{frame}
\section{ëÏÓÍÉÞÅÓËÉÅ ÔÅÌÅÓËÏÐÙ}
\begin{frame}{ëÏÓÍÉÞÅÓËÉÅ ÔÅÌÅÓËÏÐÙ}
\vspace*{-1em}\begin{columns}
\column{0.55\textwidth}
\img[0.8]{Hipparcos-testing-estec}
\column{0.4\textwidth}
\begin{block}{}
1989--1993, Hipparcos "--- High Precision Parallax Collecting Satellite. 29-ÓÍ ÔÅÌÅÓËÏÐ!
1mas. ëÁÔÁÌÏÇÉ Hipparcos (>118\,ÔÙÓ, 1997), Tycho (1\,ÍÌÎ, 1997) É Tycho-2 (2.5\,ÍÌÎ, 2000,
ÂÏÌÅÅ ÔÏÞÎÙÊ).
óÌÅÄÕÀÝÁÑ "--- ÍÉÓÓÉÑ Gaia (2013, $1.45\times0.5\,$Í).s
\end{block}
\end{columns}
\end{frame}
\begin{frame}{}
\vspace*{-1em}
\img[0.5]{HST-SM4}\vspace*{-2em}
\begin{block}{ôÅÌÅÓËÏÐ ÉÍ.~èÁÂÂÌÁ}
2.4~Í ÚÅÒËÁÌÏ.
1978 "--- ÓÔÁÒÔÏ×ÏÅ ÆÉÎÁÎÓÉÒÏ×ÁÎÉÅ, 36~ÍÌÎ.ÄÌÒ.
1986 "--- ÏÂÝÉÊ ÂÀÄÖÅÔ ÐÒÏÅËÔÁ ×ÙÒÏÓ ÄÏ 1.175~ÍÌÒÄ.ÄÌÒ.
25 ÁÐÒÅÌÑ 1990~Ç. "--- ÚÁÐÕÓË "--- $\Sum$ 2.5~ÍÌÒÄ.ÄÌÒ.
1999 "--- ÏËÏÌÏ 6~ÍÌÒÄ.ÄÌÒ. + 593~ÍÌÎ.Å×Ò. ÏÔ åëá.
þÅÔÙÒÅ ÜËÓÐÅÄÉÃÉÉ.
\end{block}
\end{frame}
\begin{frame}{}
\img{Hubble_Probes_the_Early_Universe}
\end{frame}
\begin{frame}{}
\begin{columns}
\column{0.55\textwidth}\vspace*{-2em}
\img[0.85]{Kepler_Space_Telescope}
\column{0.4\textwidth}
\begin{block}{ôÅÌÅÓËÏÐ ëÅÐÌÅÒÁ}
2009--2013, 2013--, ÐÏÉÓË ÜËÚÏÐÌÁÎÅÔ É ÐÅÒÅÍÅÎÎÙÈ Ú×ÅÚÄ. 0.95~Í ÁÐÅÒÔÕÒÁ, ÚÅÒËÁÌÏ 1.4~Í (ËÁÍÅÒÁ
ûÍÉÄÔÁ).
42 ðúó 2200x1024.
$\sim0.5$~ÍÌÒÄ.ÄÌÒ.
ãÅÌØ "--- 13.2\,ÍÌÎ. Ú×ÅÚÄ. ôÏÌØËÏ × 2009\,Ç ÂÙÌÏ ÏÂÎÁÒÕÖÅÎÏ 7500 ÐÅÒÅÍÅÎÎÙÈ Ú×ÅÚÄ × ÓÐÉÓËÅ ÃÅÌÅÊ
ÎÁ ÐÏÉÓËÉ ÜËÚÏÐÌÁÎÅÔ.
ë ÍÁÀ 2016 ÏÂÎÁÒÕÖÅÎÏ 1284 ÐÌÁÎÅÔÙ (ÉÚ ÎÉÈ 550 ËÁÍÅÎÎÙÈ, 9 × ÏÂÉÔÁÅÍÏÊ ÚÏÎÅ).
30~ÏËÔÑÂÒÑ 2018\,Ç ÍÉÓÓÉÑ ÚÁ×ÅÒÛÅÎÁ. ïÔËÌÀÞÉÌÉ × ÄÅÎØ ÓÍÅÒÔÉ é.~ëÅÐÌÅÒÁ: 15~ÎÏÑÂÒÑ.
éÚÕÞÅÎÏ 530506 Ú×ÅÚÄ, ÏÂÎÁÒÕÖÅÎÏ 2662 ÜËÚÏÐÌÁÎÅÔÙ. îÁ ÓÍÅÎÕ ÐÒÉÛÅÌ TESS.
\end{block}
\end{columns}
\end{frame}
\begin{frame}{JWST}
\vspace*{-1em}
\only<1>{\begin{columns}\column{0.6\textwidth}\img[0.8]{JWST0}
\column{0.37\textwidth}\begin{block}{}25~ÄÅËÁÂÒÑ 2021~ÇÏÄÁ. $D=6.5\,$Í, $F=131.4\,$Í. éÎÓÔÒÕÍÅÎÔÙ:
MIRI (ËÁÍÅÒÁ ÓÒÅÄÎÅÇÏ éë), NIRCam (ËÁÍÅÒÁ ÂÌÉÖÎÅÇÏ éë), NIRSpec (ÓÐÅËÔÒÏÇÒÁÆ ÂÌÉÖÎÅÇÏ éë), FGS
\slash NIRISS (ÄÁÔÞÉË ÔÏÞÎÏÇÏ ÎÁ×ÅÄÅÎÉÑ Ó ÂÅÓÝÅÌÅ×ÙÍ ÓÐÅËÔÒÏÇÒÁÆÏÍ ÂÌÉÖÎÅÇÏ éë).
ïÒÂÉÔÁ × $L_2$ úÅÍÌÑ--óÏÌÎÃÅ (1.5\,ÍÌÎ. ËÍ. ÏÔ úÅÍÌÉ).
ðÏÚ×ÏÌÑÅÔ ÞÁÓÔÉÞÎÏ ÜËÒÁÎÉÒÏ×ÁÔØ ÉÚÌÕÞÅÎÉÅ óÏÌÎÃÁ.
\end{block}
\end{columns}}
\only<2>{\img[0.5]{JWST1}}
\only<3>{\img[0.75]{JWST2}}
\end{frame}
\if0
\begin{frame}{}
\img[0.5]{Space_telescopes}
\end{frame}
\fi
\begin{frame}{ïÐÔÉÞÅÓËÉÅ ÎÅÂÙÌÉÃÙ}
<<çÉÐÅÒÂÏÌÏÉÄ ÉÎÖÅÎÅÒÁ çÁÒÉÎÁ>> "--- Ó×ÅÄÅÎÉÅ ÐÏÔÏËÁ ÉÚÌÕÞÅÎÉÑ × Ó×ÅÒÈÔÏÎËÉÊ ÐÕÞÏË: ÎÕÌÅ×ÏÊ ÒÁÚÍÅÒ
ÏÓ×ÅÔÉÔÅÌÑ, ÏÔÓÕÔÓÔ×ÉÅ ÁÂÅÒÒÁÃÉÊ, ÏÔÓÕÔÓÔ×ÉÅ ÄÉÆÒÁËÃÉÉ.
úÁ ÂÏÌØÛÏÅ ÐÏÌÅ ÚÒÅÎÉÑ ÐÒÉÈÏÄÉÔÓÑ ÐÌÁÔÉÔØ ÍÁÌÙÍ ÕÓÉÌÅÎÉÅÍ. úÁËÏÎ ìÁÇÒÁÎÖÁ--çÅÌØÍÇÏÌØÃÁ: $\alpha
yn=\alpha' y'n'$ ($\alpha$~-- ÕÇÌ. ÒÁÚÍÅÒ ÁÐÅÒÔÕÒÙ ÉÚ ÔÏÞËÉ ÏÂßÅËÔÁ, $y$~-- ÌÉÎÅÊÎÙÊ ÒÁÚÍÅÒ
ÏÂßÅËÔÁ, $n$~-- ÐÏËÁÚÁÔÅÌØ ÐÒÅÌÏÍÌÅÎÉÑ).
îÅÏÂÒÁÔÉÍÙÅ Ñ×ÌÅÎÉÑ: ÄÉÆÒÁËÃÉÑ, ÒÁÓÓÅÑÎÉÅ, ÐÏÇÌÏÝÅÎÉÅ.
\textbf{õÇÌÏ×ÏÅ Õ×ÅÌÉÞÅÎÉÅ ÔÅÌÅÓËÏÐÁ}. ú×ÅÚÄÙ ($\Delta$~-- ÚÒÁÞÏË ÇÌÁÚÁ):
$$\frac{L}{L_0}=\left(\frac{D}{D_{out}}\right)^2\left(\frac{D_{out}}{\Delta}\right)^2=
\left(\frac{D}{\Delta}\right)^2.$$
ïÄÎÁËÏ, ËÁÞÅÓÔ×Ï ÉÚÏÂÒÁÖÅÎÉÑ: seeing$\,\sim1''$ $\Arr$ $1'$. îÅÔ ÓÍÙÓÌÁ × Õ×ÅÌÉÞÅÎÉÉ ÂÏÌØÛÅ
$\times120$. äÌÑ ×ÉÚÕÁÌØÎÙÈ ÎÁÂÌÀÄÅÎÉÊ ÎÅÔ ÓÍÙÓÌÁ ÉÓÐÏÌØÚÏ×ÁÔØ ÔÅÌÅÓËÏÐ ÂÏÌÅÅ
$8\cdot120\approx1\,$Í!!!
ðÌÁÎÅÔÙ É ÔÕÍÁÎÎÏÓÔÉ: ÏÓ×ÅÝÅÎÎÏÓÔØ ÐÒÏÐÏÒÃÉÏÎÁÌØÎÁ $(D/F)^2$ \Arr ÐÒÉ ÒÁ×ÎÙÈ Ó×ÅÔÏÓÉÌÁÈ
ÏÓ×ÅÝÅÎÎÏÓÔØ ÎÅ ÍÅÎÑÅÔÓÑ! õ Ú×ÅÚÄ ÖÅ (ÐÒÉ ÕÓÌÏ×ÉÉ ÓÏÇÌÁÓÏ×ÁÎÉÑ ÍÁÓÛÔÁÂÁ) $\propto D^2$.
á ÍÏÖÎÏ ÌÉ Õ×ÉÄÅÔØ ÓÌÅÄÙ ÁÍÅÒÉËÁÎÃÅ× ÎÁ ìÕÎÅ? 50-ÍÅÔÒÏ×ÙÊ ÔÅÌÅÓËÏÐ Ó ÉÄÅÁÌØÎÏÊ ÏÐÔÉËÏÊ ÎÁ ÏÒÂÉÔÅ
"--- ÚÁÐÒÏÓÔÏ!
\end{frame}
\begin{frame}{óÐÁÓÉÂÏ ÚÁ ×ÎÉÍÁÎÉÅ!}
\centering
\begin{minipage}{5cm}
\begin{block}{mailto}
eddy@sao.ru\\
edward.emelianoff@gmail.com
\end{block}\end{minipage}
\end{frame}
%
\end{document}
%