mirror of
https://github.com/eddyem/lectures.git
synced 2025-12-06 10:45:09 +03:00
700 lines
26 KiB
TeX
700 lines
26 KiB
TeX
\documentclass[10pt,pdf,hyperref={unicode}]{beamer}
|
||
\hypersetup{pdfpagemode=FullScreen}
|
||
\usepackage{lect}
|
||
|
||
\title[ôÅÌÅÓËÏÐÙ]{éÎÓÔÒÕÍÅÎÔÙ × ÐÒÉÂÌÉÖÅÎÉÑÈ ÇÅÏÍÅÔÒÉÞÅÓËÏÊ É ×ÏÌÎÏ×ÏÊ ÏÐÔÉËÉ}
|
||
\date{4 ÍÁÒÔÁ 2018 ÇÏÄÁ}
|
||
\def\ig#1{\includegraphics[width=\columnwidth]{#1}}
|
||
\def\igh#1{\includegraphics[width=0.5\columnwidth]{#1}}
|
||
|
||
\setbeamertemplate{footline}
|
||
{
|
||
\leavevmode%
|
||
\hbox{%
|
||
\begin{beamercolorbox}[wd=.333333\paperwidth,ht=2.25ex,dp=1ex,center]{author in head/foot}%
|
||
\usebeamerfont{author in head/foot}\insertshortauthor~~(\insertshortinstitute)
|
||
\end{beamercolorbox}%
|
||
\begin{beamercolorbox}[wd=.333333\paperwidth,ht=2.25ex,dp=1ex,center]{title in head/foot}%
|
||
\usebeamerfont{title in head/foot}\insertshorttitle
|
||
\end{beamercolorbox}%
|
||
\begin{beamercolorbox}[wd=.333333\paperwidth,ht=2.25ex,dp=1ex,right]{date in head/foot}%
|
||
\usebeamerfont{date in head/foot}\insertshortdate{}\hfill\insertframenumber\hspace{1em}
|
||
\end{beamercolorbox}
|
||
}%
|
||
\vskip0pt%
|
||
}
|
||
\begin{document}
|
||
% ôÉÔÕÌ
|
||
\bgroup\setbeamercolor{normal text}{bg=black}
|
||
\begin{frame}
|
||
\maketitle
|
||
\end{frame}\egroup
|
||
\logo{}
|
||
% óÏÄÅÒÖÁÎÉÅ
|
||
\begin{frame}
|
||
\tableofcontents
|
||
\end{frame}
|
||
\section{ôÅÌÅÓËÏÐ ËÁË ËÏÎÃÅÎÔÒÁÔÏÒ ÜÎÅÒÇÉÉ}
|
||
|
||
|
||
\begin{frame}{èÏÄ ÌÕÞÅÊ × ÌÉÎÚÅ}
|
||
\only<1>{éÄÅÁÌØÎÁÑ (ÔÏÎËÁÑ) ÌÉÎÚÁ. \img{thin_lens}}
|
||
%\only<2>{ôÏÌÓÔÁÑ ÌÉÎÚÁ, ÇÌÁ×ÎÙÅ ÐÌÏÓËÏÓÔÉ É ÔÏÞËÉ. \img{pripl}}
|
||
\end{frame}
|
||
|
||
\begin{blueframe}{ëÏÎÉÞÅÓËÉÅ ÓÅÞÅÎÉÑ}
|
||
\only<1>{\begin{block}{}óÆÅÒÁ. óÆÅÒÉÞÅÓËÁÑ ÁÂÅÒÒÁÃÉÑ.\end{block}\img[0.8]{spherical_mirror}}
|
||
\only<2>{\begin{block}{}ðÁÒÁÂÏÌÁ.\end{block}\img[0.8]{parabola_with_focus_and_arbitrary_line}}
|
||
%\only<3>{\begin{block}{}üÌÌÉÐÓ, ÇÉÐÅÒÂÏÌÁ, ÐÁÒÁÂÏÌÁ.\end{block}\img{ell_par_hyp}}
|
||
\only<3>{\begin{block}{}ëÁÕÓÔÉËÁ.\end{block}\img[0.8]{Miroir-cercle}}
|
||
\end{blueframe}
|
||
|
||
|
||
\section{æÏÒÍÉÒÏ×ÁÎÉÅ ÉÚÏÂÒÁÖÅÎÉÊ ÌÉÎÚÁÍÉ É ÚÅÒËÁÌÁÍÉ}
|
||
\begin{blueframe}{ðÒÉÎÃÉÐ çÀÊÇÅÎÓÁ--æÒÅÎÅÌÑ}
|
||
\only<1>{\begin{defin}çÉÐÏÔÅÚÁ: ËÁÖÄÙÊ ÜÌÅÍÅÎÔ ×ÏÌÎÏ×ÏÇÏ ÆÒÏÎÔÁ ÍÏÖÎÏ ÒÁÓÓÍÁÔÒÉ×ÁÔØ ËÁË ÃÅÎÔÒ ×ÔÏÒÉÞÎÏÇÏ ×ÏÚÍÕÝÅÎÉÑ, ÐÏÒÏÖÄÁÀÝÅÇÏ ×ÔÏÒÉÞÎÙÅ ÓÆÅÒÉÞÅÓËÉÅ ×ÏÌÎÙ, Á ÒÅÚÕÌØÔÉÒÕÀÝÅÅ Ó×ÅÔÏ×ÏÅ ÐÏÌÅ × ËÁÖÄÏÊ ÔÏÞËÅ ÐÒÏÓÔÒÁÎÓÔ×Á ÂÕÄÅÔ ÏÐÒÅÄÅÌÑÔØÓÑ ÉÎÔÅÒÆÅÒÅÎÃÉÅÊ ÜÔÉÈ ×ÏÌÎ.\end{defin}
|
||
\begin{block}{}
|
||
çÕÓÔÁ× ëÉÒÈÇÏÆ ÐÒÉÄÁÌ ÐÒÉÎÃÉÐÕ çÀÊÇÅÎÓÁ ÓÔÒÏÇÉÊ ÍÁÔÅÍÁÔÉÞÅÓËÉÊ ×ÉÄ, ÐÏËÁÚÁ×, ÞÔÏ ÅÇÏ ÍÏÖÎÏ ÓÞÉÔÁÔØ ÐÒÉÂÌÉÖÅÎÎÏÊ ÆÏÒÍÏÊ ÔÅÏÒÅÍÙ, ÎÁÚÙ×ÁÅÍÏÊ ÉÎÔÅÇÒÁÌØÎÏÊ ÔÅÏÒÅÍÏÊ ëÉÒÈÇÏÆÁ.
|
||
|
||
æÒÏÎÔÏÍ ×ÏÌÎÙ ÔÏÞÅÞÎÏÇÏ ÉÓÔÏÞÎÉËÁ × ÏÄÎÏÒÏÄÎÏÍ ÉÚÏÔÒÏÐÎÏÍ ÐÒÏÓÔÒÁÎÓÔ×Å Ñ×ÌÑÅÔÓÑ ÓÆÅÒÁ. áÍÐÌÉÔÕÄÁ ×ÏÚÍÕÝÅÎÉÑ ×Ï ×ÓÅÈ ÔÏÞËÁÈ ÓÆÅÒÉÞÅÓËÏÇÏ ÆÒÏÎÔÁ ×ÏÌÎÙ, ÒÁÓÐÒÏÓÔÒÁÎÑÀÝÅÊÓÑ ÏÔ ÔÏÞÅÞÎÏÇÏ ÉÓÔÏÞÎÉËÁ, ÏÄÉÎÁËÏ×Á.
|
||
|
||
äÁÌØÎÅÊÛÉÍ ÏÂÏÂÝÅÎÉÅÍ É ÒÁÚ×ÉÔÉÅÍ ÐÒÉÎÃÉÐÁ çÀÊÇÅÎÓÁ Ñ×ÌÑÅÔÓÑ ÆÏÒÍÕÌÉÒÏ×ËÁ ÞÅÒÅÚ ÉÎÔÅÇÒÁÌÙ ÐÏ ÔÒÁÅËÔÏÒÉÑÍ, ÓÌÕÖÁÝÁÑ ÏÓÎÏ×ÏÊ ÓÏ×ÒÅÍÅÎÎÏÊ Ë×ÁÎÔÏ×ÏÊ ÍÅÈÁÎÉËÉ. ðÒÉÎÃÉÐ æÅÒÍÁ "--- ÎÁÉÍÅÎØÛÅÅ ×ÒÅÍÑ ÒÁÓÐÒÏÓÔÒÁÎÅÎÉÑ. ðÒÉÎÃÉÐ ÎÁÉÍÅÎØÛÅÇÏ ÄÅÊÓÔ×ÉÑ çÁÍÉÌØÔÏÎÁ.
|
||
\end{block}}
|
||
\only<2>{\begin{block}{}ðÒÉÎÃÉÐ æÅÒÍÁ.\end{block}\img[0.7]{Least_action_principle}}
|
||
\only<3>{\begin{block}{}òÅÆÒÁËÃÉÑ. (òÏÔÁ ÓÏÌÄÁÔ, ÍÑÞ). úÁ×ÉÓÉÍÏÓÔØ ÓËÏÒÏÓÔÉ Ó×ÅÔÁ ÏÔ ÄÌÉÎÙ ×ÏÌÎÙ.\end{block}
|
||
\img[0.7]{Refraction_-_Huygens-Fresnel_principle}}
|
||
\only<4>{\begin{block}{}äÉÆÒÁËÃÉÑ ÎÁ ÝÅÌÉ.\end{block}\img[0.8]{Refraction_on_an_aperture_-_Huygens-Fresnel_principle}}
|
||
%\only<5>{\begin{block}{}ïÐÔÉÞÅÓËÁÑ ÒÁÚÎÏÓÔØ ÈÏÄÁ.\end{block}\img[0.8]{Huygens_Refracted_Waves}}
|
||
\end{blueframe}
|
||
|
||
\begin{frame}{úÁËÏÎ óÎÅÌÌÉÕÓÁ}
|
||
\begin{defin}÷ÉÌÌÅÂÒÏÒÄ óÎÅÌÌØ (ÇÏÌÌ), ÎÁÞÁÌÏ XVII~×ÅËÁ:\hspace{1em}
|
||
$\displaystyle\frac{\sin\theta_2}{\sin\theta_1}=\frac{v_2}{v_1}=\frac{n_1}{n_2}$\end{defin}
|
||
\img[0.8]{snells_law}
|
||
(äÏ óÎÅÌÌÑ ÚÁËÏÎ ÏÐÉÓÁÌ ÐÅÒÓ. ÍÁÔÅÍÁÔÉË ÉÂÎ óÁÈÌØ, ËÏÔÏÒÙÊ Ë ÔÏÍÕ ÖÅ ÚÁÎÉÍÁÌÓÑ É ÁÓÆÅÒÉÞÅÓËÏÊ ÏÐÔÉËÏÊ)
|
||
\end{frame}
|
||
|
||
\subsection{ðÁÒÁËÓÉÁÌØÎÁÑ ÏÐÔÉËÁ}
|
||
\begin{frame}{ðÁÒÁËÓÉÁÌØÎÁÑ (ÇÁÕÓÓÏ×Á) ÏÐÔÉËÁ}
|
||
\begin{defin}\textbf{ðÁÒÁËÓÉÁÌØÎÏÅ ÐÒÉÂÌÉÖÅÎÉÅ} × ÇÅÏÍÅÔÒÉÞÅÓËÏÊ ÏÐÔÉËÅ "--- ÒÁÓÓÍÏÔÒÅÎÉÅ ÔÏÌØËÏ ÌÕÞÅÊ, ÉÄÕÝÉÈ ÐÏÄ ÍÁÌÙÍÉ ÕÇÌÁÍÉ Ë ÇÌÁ×ÎÏÊ ÏÐÔÉÞÅÓËÏÊ ÏÓÉ.\end{defin}
|
||
\begin{columns}
|
||
\column{0.4\textwidth}
|
||
\begin{block}{}
|
||
$\sin\theta\approx\theta$, $\tg\theta\approx\theta$ É $\cos\theta\approx 1$. ðÒÉÂÌÉÖÅÎÉÅ ×ÔÏÒÏÇÏ ÐÏÒÑÄËÁ (ÒÑÄ ôÅÊÌÏÒÁ): $ \cos\theta\approx 1-{\theta ^{2} \over 2}$. ïÛÉÂËÁ ÎÅ ÂÏÌÅÅ 0.5\% ×ÐÌÏÔØ ÄÏ $\theta=10^\circ$.
|
||
|
||
äÌÑ Â\'ÏÌØÛÉÈ ÕÇÌÏ× ÐÒÉÈÏÄÉÔÓÑ ÒÁÚÌÉÞÁÔØ ÍÅÒÉÄÉÏÎÁÌØÎÙÅ (ÐÌÏÓËÏÓÔØ <<ÏÓÎÏ×ÎÏÊ ÌÕÞ+ÏÐÔÉÞÅÓËÁÑ ÏÓØ>>) É ÓÁÇÇÉÔÁÌØÎÙÅ ÌÕÞÉ.
|
||
\end{block}
|
||
\column{0.6\textwidth}
|
||
\img{saggmerid}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\begin{frame}{æÏÒÍÕÌÁ ÔÏÎËÏÊ ÌÉÎÚÙ}
|
||
\begin{block}{æÏÒÍÕÌÁ ÔÏÎËÏÊ ÌÉÎÚÙ.}
|
||
$$\frac1{S_1}+\frac1{S_2}=\frac1{f}$$
|
||
\end{block}
|
||
\img{Lens3}
|
||
\end{frame}
|
||
|
||
\subsection{÷ÏÌÎÏ×ÁÑ ÏÐÔÉËÁ}
|
||
\begin{frame}{äÉÓÐÅÒÓÉÑ}
|
||
\img{refdisp}
|
||
\end{frame}
|
||
|
||
\begin{frame}{éÎÔÅÒÆÅÒÅÎÃÉÑ}
|
||
\only<1,2>{\begin{defin}\textbf{éÎÔÅÒÆÅÒÅÎÃÉÑ ×ÏÌÎ} "---
|
||
×ÚÁÉÍÎÏÅ Õ×ÅÌÉÞÅÎÉÅ ÉÌÉ ÕÍÅÎØÛÅÎÉÅ ÒÅÚÕÌØÔÉÒÕÀÝÅÊ ÁÍÐÌÉÔÕÄÙ Ä×ÕÈ ÉÌÉ ÎÅÓËÏÌØËÉÈ ËÏÇÅÒÅÎÔÎÙÈ ×ÏÌÎ ÐÒÉ ÉÈ ÎÁÌÏÖÅÎÉÉ ÄÒÕÇ ÎÁ ÄÒÕÇÁ.\end{defin}}
|
||
\only<1>{\img[0.9]{interference3a}}
|
||
\only<2>{\img[0.9]{interference3}}
|
||
\only<3>{\begin{columns}\column{0.5\textwidth}
|
||
\begin{block}{ïÐÙÔ àÎÇÁ}
|
||
ôÏÍÁÓ àÎÇ, 1803. ûÉÒÉÎÁ ÝÅÌÅÊ ÐÒÉÂÌÉÚÉÔÅÌØÎÏ ÒÁ×ÎÁ ÄÌÉÎÅ ×ÏÌÎÙ ÉÚÌÕÞÁÅÍÏÇÏ Ó×ÅÔÁ.
|
||
äÏËÁÚÁÔÅÌØÓÔ×Ï ×ÏÌÎÏ×ÏÊ ÐÒÉÒÏÄÙ Ó×ÅÔÁ.
|
||
|
||
éÎÔÅÒÆÅÒÅÎÃÉÏÎÎÁÑ ËÁÒÔÉÎÁ ×ÏÚÎÉËÁÅÔ ÎÁ ÜËÒÁÎÅ, ËÏÇÄÁ ÛÉÒÉÎÁ ÐÒÏÒÅÚÅÊ ÂÌÉÚËÁ Ë ÄÌÉÎÅ ×ÏÌÎÙ ÉÚÌÕÞÁÅÍÏÇÏ ÍÏÎÏÈÒÏÍÁÔÉÞÅÓËÏÇÏ Ó×ÅÔÁ. åÓÌÉ ÛÉÒÉÎÕ ÐÒÏÒÅÚÅÊ Õ×ÅÌÉÞÉ×ÁÔØ, ÔÏ ÏÓ×ÅÝ£ÎÎÏÓÔØ ÜËÒÁÎÁ ÂÕÄÅÔ ×ÏÚÒÁÓÔÁÔØ, ÎÏ ËÏÎÔÒÁÓÔ ÉÎÔÅÒÆÅÒÅÎÃÉÏÎÎÏÊ ËÁÒÔÉÎÙ ÂÕÄÅÔ ÐÁÄÁÔØ ×ÐÌÏÔØ ÄÏ ÐÏÌÎÏÇÏ Å£ ÉÓÞÅÚÎÏ×ÅÎÉÑ.
|
||
\end{block}
|
||
\column{0.5\textwidth}\img{interference4}
|
||
\end{columns}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{äÉÆÒÁËÃÉÑ}
|
||
\begin{columns}
|
||
\column{0.6\textwidth}
|
||
\begin{defin}\textbf{äÉÆÒÁËÃÉÑ} "--- Ñ×ÌÅÎÉÅ ÏÔËÌÏÎÅÎÉÑ ×ÏÌÎ ÏÔ ÐÒÑÍÏÌÉÎÅÊÎÏÇÏ ÐÒÉ ×ÚÁÉÍÏÄÅÊÓÔ×ÉÉ Ó ÐÒÅÐÑÔÓÔ×ÉÅÍ.\end{defin}
|
||
\begin{block}{}
|
||
$b\sin\phi=k\lambda$. äÉÓË üÊÒÉ: $\sin \theta_{min1} \approx 1.22 \frac{\lambda}{d} $
|
||
|
||
æÏÒÍÕÌÁ üÊÒÉ: $s''=\frac{2.76}{a}$ ($a$ × ÄÀÊÍÁÈ).
|
||
\end{block}\vspace*{-1.5em}
|
||
\img[0.8]{Airy-pattern}
|
||
\column{0.38\textwidth}\vspace{-1em}
|
||
\img[0.9]{Wave_Diffraction_4Lambda_Slit}
|
||
\vspace*{-2em}\img{diff_slit}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\section{ôÅÌÅÓËÏÐÙ}
|
||
\subsection{òÅÆÒÁËÔÏÒÙ}
|
||
\begin{frame}{òÅÆÒÁËÔÏÒÙ}
|
||
\only<1>{çÁÌÉÌÅÑ\\\vspace*{-2em}\img[0.6]{galileoscopes}\vspace*{-1em}\img[0.6]{galileo_rays}}
|
||
\only<2>{ëÅÐÌÅÒÁ\img[0.9]{keplerian_ray}}
|
||
\end{frame}
|
||
|
||
\subsection{òÅÆÌÅËÔÏÒÙ}
|
||
\begin{frame}{òÅÆÌÅËÔÏÒÙ}
|
||
\begin{block}{}îØÀÔÏÎÁ (1668)\end{block}\begin{columns}
|
||
\column{0.49\textwidth}\img{NewtonsTelescopeReplica}
|
||
\column{0.49\textwidth}\blueimg{Newtonian_telescope}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\section{áÂÅÒÒÁÃÉÉ}
|
||
\begin{blueframe}{èÒÏÍÁÔÉÞÅÓËÁÑ ÁÂÅÒÒÁÃÉÑ}
|
||
\only<1>{\img{Chromatic_aberration_lens_diagram}}
|
||
\only<2>{\img{achromatic}}
|
||
\only<3>{\blue{áÐÏÈÒÏÍÁÔ}\img{Apochromat}}
|
||
\end{blueframe}
|
||
|
||
\begin{blueframe}{íÏÎÏÈÒÏÍÁÔÉÞÅÓËÉÅ ÁÂÅÒÒÁÃÉÉ}
|
||
\only<1>{\blue{óÆÅÒÉÞÅÓËÁÑ ÁÂÅÒÒÁÃÉÑ, $\propto(D/F)^3$}\\
|
||
\igh{Spherical_aberration_1}\igh{Spherical_aberration_2}}
|
||
\only<2>{\vspace*{-1em}\vbox to 0pt{\blue{ëÏÍÁ, $\propto(D/F)^2$}}\img{Lens-coma}}
|
||
\only<3>{\vspace*{-1em}\vbox to 0pt{\blue{áÓÔÉÇÍÁÔÉÚÍ, $\propto(D/F)$}}\img{meridional-sagittal-planes}}
|
||
\only<4>{\vspace*{-1em}\vbox to 0pt{\blue{äÉÓÔÏÒÓÉÑ}}\img{distortion}}
|
||
\only<5>{\blue{ëÒÉ×ÉÚÎÁ ÐÏÌÑ "--- ÆÏËÁÌØÎÁÑ ÐÌÏÓËÏÓÔØ <<ëÅÐÌÅÒÁ>>}\\
|
||
\igh{Field_curvature}\igh{Keplerspacecraft-FocalPlane-cutout}}
|
||
\end{blueframe}
|
||
|
||
|
||
\subsection{éÚÍÅÒÅÎÉÅ ÁÂÅÒÒÁÃÉÊ}
|
||
\begin{frame}{ôÅÓÔ æÕËÏ}
|
||
\cols{\col{0.6}
|
||
\begin{block}{}
|
||
1858, L\'eon Foucault. éÚÎÁÞÁÌØÎÏ "--- ÉÚ ÃÅÎÔÒÁ ËÒÉ×ÉÚÎÙ ÚÅÒËÁÌÁ ÐÒÉ ÅÇÏ ÛÌÉÆÏ×ÁÎÉÉ.
|
||
\end{block}\img{Foucault-Test_1}
|
||
\col{0.4}\img{Foucault_test}}
|
||
\end{frame}
|
||
|
||
|
||
\begin{frame}{íÅÔÏÄ çÁÒÔÍÁÎÎÁ}
|
||
\img[0.9]{hartmann}
|
||
\end{frame}
|
||
|
||
\begin{frame}{íÅÔÏÄ ûÁËÁ-çÁÒÔÍÁÎÎÁ}
|
||
\img{shag}
|
||
\end{frame}
|
||
|
||
\begin{frame}{íÅÔÏÄ òÏÄÄØÅ}
|
||
\img[0.8]{Roddiergrab}
|
||
\end{frame}
|
||
|
||
\section{ïÓÎÏ×ÎÙÅ ÈÁÒÁËÔÅÒÉÓÔÉËÉ ÔÅÌÅÓËÏÐÏ×}
|
||
\begin{frame}{ïÓÎÏ×ÎÙÅ ÈÁÒÁËÔÅÒÉÓÔÉËÉ ÔÅÌÅÓËÏÐÏ×}
|
||
\begin{columns}\column{0.6\textwidth}
|
||
\begin{block}{}
|
||
\textbf{òÁÚÒÅÛÅÎÉÅ} $\theta =1.220\dfrac\lambda{D}=\dfrac{16.4}{D}$ $''/$ÓÍ ÄÌÑ 650\,ÎÍ.\\
|
||
\textbf{õÇÌÏ×ÏÅ Õ×ÅÌÉÞÅÎÉÅ} $\Gamma=\dfrac{F}{f}$, ÍÉÎÉÍÁÌØÎÏÅ: $\Gamma=\dfrac{D}{D_{ep}}$.\\
|
||
\textbf{ðÏÌÅ ÚÒÅÎÉÑ} $\omega=\dfrac\Omega\Gamma$ ($\Omega$~-- ÐÏÌÅ ÚÒÅÎÉÑ ÏËÕÌÑÒÁ).\\
|
||
\textbf{ó×ÅÔÏÓÉÌÁ} $A=\dfrac{D}{F}$, ÏÐÒÅÄÅÌÑÅÔ ÏÓ×ÅÝÅÎÎÏÓÔØ × ÆÏËÁÌØÎÏÊ ÐÌÏÓËÏÓÔÉ.\\
|
||
\textbf{ïÔÎÏÓÉÔÅÌØÎÏÅ ÏÔ×ÅÒÓÔÉÅ} $F\#=1/A=F/D$.\\
|
||
\textbf{ðÒÏÎÉÃÁÀÝÁÑ ÓÉÌÁ} $m$~-- ÎÁÉÂÏÌÅÅ ÓÌÁÂÙÅ Ú×ÅÚÄÙ (× ÚÅÎÉÔÅ) ÎÁÄ ÆÏÎÏÍ.\\
|
||
\textbf{íÁÓÛÔÁÂ} $u=\dfrac {206265}{F}''/$ÍÍ.
|
||
\end{block}
|
||
\column{0.37\textwidth}
|
||
\img{Airy_disk_spacing_near_Rayleigh_criterion}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\begin{frame}{íÁÓËÁ âÁÈÔÉÎÏ×Á}
|
||
\only<1>{\img[0.6]{Bahtinov_mask}}
|
||
\only<2>{\img{Bahtinov_mask_example}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{ðÒÅÉÍÕÝÅÓÔ×Á ÒÅÆÌÅËÔÏÒÏ× ÎÁÄ ÒÅÆÒÁËÔÏÒÁÍÉ}
|
||
\begin{columns}
|
||
\column{0.5\textwidth}
|
||
\begin{block}{òÅÆÌÅËÔÏÒ}
|
||
îÅÔ ÈÒÏÍÁÔÉÞÅÓËÏÊ ÁÂÅÒÒÁÃÉÉ.\\
|
||
óÔÏÉÍÏÓÔØ ÎÉÖÅ.\\
|
||
ôÒÕÂÁ ËÏÍÐÁËÔÎÅÊ.\\
|
||
ðÏÌÉÒÏ×ÁÔØ ÔÏÌØËÏ ÏÄÎÕ ÐÏ×ÅÒÈÎÏÓÔØ.\\
|
||
ðÏÓÁÄËÁ ÐÏ ×ÓÅÊ ÐÌÏÝÁÄÉ ÚÅÒËÁÌÁ.\\
|
||
ïÓÎÏ×ÎÁÑ ÍÁÓÓÁ ×ÎÉÚÕ ÔÒÕÂÙ.\\
|
||
\end{block}
|
||
\begin{block}{òÅÆÒÁËÔÏÒ}
|
||
îÅÔ ÄÉÆÒÁËÃÉÏÎÎÏÇÏ ËÒÅÓÔÁ ÏÔ ÒÁÓÔÑÖÅË.\\
|
||
îÅ ÎÁÄÏ ÐÅÒÅÁÌÀÍÉÎÉÒÏ×ÁÔØ.\\
|
||
îÅ ÎÕÖÎÁ ËÏÌÌÉÍÁÃÉÑ ÜÌÅÍÅÎÔÏ×.\\
|
||
úÁËÒÙÔÁÑ ÔÒÕÂÁ "--- ÍÅÎØÛÅ ÇÒÑÚÉ.\\
|
||
\end{block}
|
||
\column{0.48\textwidth}\img{refrVSrefl}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\section{íÏÎÔÉÒÏ×ËÁ ÔÅÌÅÓËÏÐÁ}
|
||
\begin{frame}{üË×ÁÔÏÒÉÁÌØÎÁÑ ÍÏÎÔÉÒÏ×ËÁ}
|
||
\only<1>{\begin{columns}
|
||
\column{0.6\textwidth}\vspace*{-1.4em}\img[0.9]{fraunh_tel}
|
||
\column{0.4\textwidth}\begin{block}{1824, êÏÚÅÆ ÆÏÎ æÒÁÕÎÇÏÆÅÒ}
|
||
ôÅÌÅÓËÏÐ ÏÂÓÅÒ×ÁÔÏÒÉÉ ôÁÒÔÕ. çÅÒÍÁÎÓËÁÑ ÍÏÎÔÉÒÏ×ËÁ.
|
||
|
||
÷ 1853 Ç. àÓÔÕÓ ÆÏÎ ìÉÂÉÈ ÐÒÅÄÌÏÖÉÌ ÍÅÔÏÄ ×ÙÄÅÌÅÎÉÑ ÍÅÔÁÌÌÉÞÅÓËÏÇÏ ÓÅÒÅÂÒÁ ÉÚ ÒÁÓÔ×ÏÒÁ
|
||
ÎÉÔÒÁÔÁ ÓÅÒÅÂÒÁ ÄÌÑ ÓÅÒÅÂÒÅÎÉÑ ÓÔÅËÌÁ. ÷ 1856-57~ÇÇ. ëÁÒÌ á×ÇÕÓÔ ÆÏÎ ûÔÁÊÎÈÅÊÌØ É ìÅÏÎ
|
||
æÕËÏ
|
||
(ÎÅÚÁ×ÉÓÉÍÏ) ×ÐÅÒ×ÙÅ ÉÓÐÏÌØÚÏ×ÁÌÉ ÜÔÏÔ ÍÅÔÏÄ.
|
||
\end{block}\end{columns}}
|
||
\only<2>{\begin{columns}
|
||
\column{0.5\textwidth}\vspace*{-1.4em}
|
||
\img{100_inch_Hooker_Telescope}
|
||
\column{0.4\textwidth}
|
||
\begin{block}{ôÅÌÅÓËÏÐ èÕËÅÒÁ}
|
||
100 ÄÀÊÍÏ×, 1917~Ç. áÎÇÌÉÊÓËÁÑ ÍÏÎÔÉÒÏ×ËÁ <<Ó ÑÒÍÏÍ>>.
|
||
ïÂÓÅÒ×ÁÔÏÒÉÑ íÁÕÎÔ ÷ÉÌÓÏÎ.
|
||
ëÒÕÐÎÅÊÛÉÊ ÄÏ 1949~Ç.
|
||
|
||
÷ 1935~Ç. ÓÅÒÅÂÒÑÎÏÅ ÐÏËÒÙÔÉÅ ÓÍÅÎÅÎÏ ÁÌÀÍÉÎÉÅ×ÙÍ (äÖÏÎ äÏÎÁ×ÁÎ
|
||
óÔÒÏÎÇ, ËÁÌÔÅÈ, 1932~Ç.).\end{block}\end{columns}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{áÌØÔ-ÁÚÉÍÕÔÁÌØÎÁÑ ÍÏÎÔÉÒÏ×ËÁ}
|
||
\img[0.9]{bta_telescope}
|
||
\end{frame}
|
||
|
||
\begin{frame}{áÌØÔ-ÁÌØÔ}
|
||
\begin{columns}
|
||
\column{0.6\textwidth}\img{Baker-Nunn_camera_001}\column{0.38\textwidth}
|
||
\begin{block}{Baker--Nunn camera}
|
||
ïÔÓÕÔÓÔ×ÕÅÔ <<ÓÌÅÐÁÑ ÚÏÎÁ>> ÏËÏÌÏ ÚÅÎÉÔÁ. þÁÓÔÏ ×ËÌÀÞÁÅÔ ÁÚÉÍÕÔÁÌØÎÕÀ ÏÓØ.\\[1em]
|
||
üË×ÁÔÏÒÉÁÌØÎÁÑ "--- ÎÅ×ÏÚÍÏÖÎÏ ÒÁÚÇÒÕÚÉÔØ ÂÏÌØÛÏÅ ÚÅÒËÁÌÏ, ÏÞÅÎØ ÍÁÓÓÉ×ÎÁÑ ËÏÎÓÔÒÕËÃÉÑ, Õ ÎÅËÏÔÏÒÙÈ
|
||
ÔÉÐÏ× ÅÓÔØ <<ÓÌÅÐÁÑ ÚÏÎÁ>> Õ ÐÏÌÀÓÁ.\\[1em]
|
||
áÌØÔ--ÁÚÉÍÕÔÁÌØÎÁÑ "--- ×ÒÁÝÅÎÉÅ ÐÏÌÑ, <<ÓÌÅÐÁÑ ÚÏÎÁ>>, ÓÌÏÖÎÏÅ ÕÐÒÁ×ÌÅÎÉÅ, ÎÏ ÐÒÏÓÔÁÑ ÍÅÈÁÎÉËÁ.
|
||
\end{block}\end{columns}
|
||
\end{frame}
|
||
|
||
\begin{frame}{ïÄÎÏ- É ÍÎÏÇÏÜÌÅÍÅÎÔÎÙÅ ÉÎÓÔÒÕÍÅÎÔÙ}
|
||
\only<1>{ðÁÓÓÉ×ÎÙÅ ÒÁÚÇÒÕÚËÉ âôá.\img[0.9]{btamir0}}
|
||
\only<2>{áËÔÉ×ÎÁÑ ÒÁÚÇÒÕÚËÁ 1-Í ÚÅÒËÁÌÁ ESO (1987, NTT)\img[0.9]{1-m}}
|
||
\only<3>{âÏÌØÛÏÊ íÁÇÅÌÌÁÎÏ× ôÅÌÅÓËÏÐ (GMT, ìÁÓ-ëÁÍÐÁÎÁÓ, þÉÌÉ). \img[0.9]{GMT-3}}
|
||
\only<4>{ãÅÎÔÒÁÌØÎÏÅ ÚÅÒËÁÌÏ GMT. \img[0.9]{gmt_Central}}
|
||
\only<5>{\img[0.9]{Telescope-mount-detail}}
|
||
\only<6>{39-Í ÔÅÌÅÓËÏÐ E-ELT (ÇÏÒÁ áÒÍÁÓÏÎÅÓ, þÉÌÉ).
|
||
\img[0.9]{AAS-TMT-calendar-800}}
|
||
\only<7>{óÅÇÍÅÎÔÙ E-ELT (798 ÓÅÇÍÅÎÔÏ× ÐÏ 1.45\,Í)\img[0.9]{eelt_seg}}
|
||
\only<8>{óÅÇÍÅÎÔÙ Keck\img[0.9]{keck_segment}}
|
||
\end{frame}
|
||
|
||
\section{óÈÏÄÓÔ×Á É ÒÁÚÌÉÞÉÑ ÏÐÔÉÞÅÓËÉÈ É ÒÁÄÉÏÔÅÌÅÓËÏÐÏ×}
|
||
\begin{blueframe}{óÈÏÄÓÔ×Á É ÒÁÚÌÉÞÉÑ ÏÐÔÉÞÅÓËÉÈ É ÒÁÄÉÏÔÅÌÅÓËÏÐÏ×}
|
||
\begin{block}{}\textbf{ïÂÝÉÅ ÞÅÒÔÙ}: ËÏÎÃÅÎÔÒÁÃÉÑ ÐÁÄÁÀÝÅÇÏ ÉÚÌÕÞÅÎÉÑ × ÆÏËÁÌØÎÏÊ ÐÌÏÓËÏÓÔÉ.\\
|
||
\textbf{òÁÚÎÏÅ}: ÄÌÉÎÁ ×ÏÌÎÙ $\Arr$ ÍÁÔÅÒÉÁÌ É ËÁÞÅÓÔ×Ï ÐÏ×ÅÒÈÎÏÓÔÉ; ÒÁÚÎÙÅ ÕÓÌÏ×ÉÑ ÎÁÂÌÀÄÅÎÉÊ
|
||
(ÒÁÄÉÏ×ÏÌÎÙ ÐÒÏÈÏÄÑÔ ÓË×ÏÚØ ÏÂÌÁËÁ); ÒÁÚÎÙÅ ÚÁÄÁÞÉ (ÆÉÚÉÞÅÓËÉÅ ÕÓÌÏ×ÉÑ, ×ÙÚ×Á×ÛÉÅ ÉÚÌÕÞÅÎÉÅ;
|
||
ÐÏÇÌÏÝÅÎÉÅ ÍÅÖÚ×ÅÚÄÎÏÊ ÓÒÅÄÏÊ É Ô.Ð.; ÒÁÚÌÉÞÉÅ ÍÅÔÏÄÏ× ÉÎÔÅÒÆÅÒÏÍÅÔÒÉÉ).
|
||
\end{block}\img[0.6]{EM_Spectrum_Properties_edit}
|
||
\end{blueframe}
|
||
|
||
\begin{frame}{éÎÔÅÒÆÅÒÏÍÅÔÒÉÑ}
|
||
\only<1>{\begin{block}{}\textbf{áÓÔÒÏÎÏÍÉÞÅÓËÉÊ ÉÎÔÅÒÆÅÒÏÍÅÔÒ} ~--- ÓÏ×ÏËÕÐÎÏÓÔØ ÏÔÄÅÌØÎÙÈ
|
||
ÔÅÌÅÓËÏÐÏ×, ÓÅÇÍÅÎÔÏ× ÚÅÒËÁÌ ÉÌÉ ÁÎÔÅÎÎ, ÆÏÒÍÉÒÕÀÝÉÈ ÅÄÉÎÏÅ ÃÅÌÏÅ ÄÌÑ ÐÏ×ÙÛÅÎÉÑ ÕÇÌÏ×ÏÇÏ ÒÁÚÒÅÛÅÎÉÑ.
|
||
ðÏÌÕÞÅÎÉÅ ×ÙÓÏËÉÈ ÒÁÚÒÅÛÅÎÉÊ ÎÁ ÍÁÌÙÈ ÔÅÌÅÓËÏÐÁÈ.\end{block}
|
||
\img{Interferometer}}
|
||
\only<2>{\img[0.9]{keck_inter}}
|
||
\only<3>{\img[0.9]{keck}}
|
||
\only<4>{VLT. \img[0.65]{VLT_inter}}
|
||
\end{frame}
|
||
|
||
\begin{blueframe}{}
|
||
\begin{columns}\column{0.5\textwidth}\img{Astronomical_interferometer_line_geometry}
|
||
\column{0.48\textwidth}
|
||
\begin{block}{}òÁÚÒÅÛÅÎÉÅ (ÄÏ $0.001^m$) ËÏÍÐÏÎÅÎÔ Ä×ÏÊÎÙÈ Ú×ÅÚÄ, ÐÏÉÓË ÜËÚÏÐÌÁÎÅÔ. éÚÍÅÒÅÎÉÅ
|
||
Ä×ÉÖÅÎÉÑ Ú×ÅÚÄ (ÓÄ×ÉÇÉ ÐÏÌÏÓ) ÉÌÉ ÎÅÐÏÓÒÅÄÓÔ×ÅÎÎÏ ÐÌÁÎÅÔ (<<ÏÂÎÕÌÑÀÝÁÑ>> ÉÎÔÅÒÆÅÒÏÍÅÔÒÉÑ,
|
||
Keck).
|
||
\end{block}\end{columns}
|
||
\end{blueframe}
|
||
|
||
\section{çÒÁÎÉÃÙ ×ÏÚÍÏÖÎÏÓÔÅÊ ÎÁÚÅÍÎÙÈ ÉÎÓÔÒÕÍÅÎÔÏ×}
|
||
\begin{blueframe}{úÅÍÎÁÑ ÁÔÍÏÓÆÅÒÁ}
|
||
\begin{block}{úÅÍÎÁÑ ÁÔÍÏÓÆÅÒÁ}
|
||
îÁÚÅÍÎÁÑ ÁÓÔÒÏÆÉÚÉËÁ ÓÉÌØÎÏ ÓÖÁÔÁ × ÓÐÅËÔÒÁÌØÎÏÍ ÄÉÁÐÁÚÏÎÅ ÚÅÍÎÏÊ ÁÔÍÏÓÆÅÒÏÊ.
|
||
\end{block}
|
||
\img{Atmospheric_electromagnetic_opacity}
|
||
\end{blueframe}
|
||
|
||
\begin{frame}{ëÁÞÅÓÔ×Ï ÉÚÏÂÒÁÖÅÎÉÑ (seeing)}
|
||
\begin{columns}
|
||
\column{0.49\textwidth}\vspace{-2em}\begin{block}{}
|
||
\small\begin{itemize}
|
||
\item ðÏÌÕÛÉÒÉÎÁ (FWHM) ÉÚÏÂÒÁÖÅÎÉÑ Ú×ÅÚÄÙ.
|
||
\item $r_0$ (ÔÉÐÉÞÎÙÊ ÒÁÚÍÅÒ ÎÅÏÄÎÏÒÏÄÎÏÓÔÉ "--- ÐÁÒÁÍÅÔÒ æÒÉÄÁ) É $t_0$ (<<×ÒÅÍÑ ÚÁÍÏÒÏÚËÉ>>).
|
||
\item ðÒÏÆÉÌØ $C_{N^2}$ (ÍÏÖÅÔ ÉÚÍÅÒÑÔØÓÑ ÎÁÐÒÑÍÕÀ, ÎÁÐÒ. MASS).
|
||
\end{itemize}
|
||
\end{block}\vspace{-1.5em}\img{seeing3}\vspace{-0.5em}\hbox to 0pt{{\small îÁÉÌÕÞÛÅÅ ÍÅÓÔÏ "---
|
||
ÇÏÒÙ ÐÏÓÒÅÄÉ ÏËÅÁÎÁ.}}
|
||
\column{0.49\textwidth}\vspace{-1em}\begin{block}{}\small
|
||
÷ÁÒÉÁÃÉÑ ÆÁÚÙ ÷æ ÎÁ ×ÈÏÄÎÏÊ ÁÐÅÒÔÕÒÅ: $\sigma^2=1.0299\bigl(\dfrac{d}{r_0}\bigr)^{5/3}$.\\
|
||
$$r_0=\left(\frac{16.7\lambda^{-2}}{\cos Z}\int_0^\infty
|
||
C_{N}^2(h)\,dh\right)^{-3/5}$$
|
||
|
||
\end{block}\vspace{-1em}\img[0.8]{mass_idea}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\section{ëÏÍÐÅÎÓÁÃÉÑ ×ÌÉÑÎÉÑ ÁÔÍÏÓÆÅÒÙ}
|
||
\begin{frame}{Tip-tilt ËÏÒÒÅËÃÉÑ}
|
||
\img{bta_N2_prefocal}
|
||
\end{frame}
|
||
|
||
\def\FT#1{\mathcal{F}(#1)}
|
||
\begin{frame}{óÐÅËÌ--ÉÎÔÅÒÆÅÒÏÍÅÔÒÉÑ}
|
||
\only<1>{\img{speckles}}
|
||
\only<2>{\begin{columns}\column{0.5\textwidth}\begin{block}{}
|
||
1970, Antoine Labeyrie "--- ÍÁÔÅÍÁÔÉÞÅÓËÉÅ ÏÓÎÏ×Ù óé (ÍÅÔÏÄÙ æÕÒØÅ-ÁÎÁÌÉÚÁ).\\
|
||
\textbf{óÐÅËÔÒ ÍÏÝÎÏÓÔÉ}~-- âðæ ÐÏÌÕÉÎ×ÁÒÉÁÎÔÁ 2 ÐÏÒÑÄËÁ (ÎÁÐÒ. Á×ÔÏËÏÒÒÅÌÑÃÉÉ).
|
||
\textbf{âÉÓÐÅËÔÒ}~-- âðæ ÐÏÌÕÉÎ×ÁÒÉÁÎÔÁ 3 ÐÏÒÑÄËÁ. ôÅÏÒÅÍÁ Ó×ÅÒÔËÉ:
|
||
$\FT{f*g}=\FT{f}\cdot\FT{g}$ $\Arr$ ÂÉÓÐÅËÔÒ
|
||
$B(f_1,f_2)=\mathcal{F}^{*}(f_1+f_2)\cdot\FT{f_1}\cdot\FT{f_2}$.
|
||
\end{block}\column{0.48\textwidth}
|
||
\img{WR_speckle_restored}\end{columns}}
|
||
\end{frame}
|
||
|
||
\begin{blueframe}{áÄÁÐÔÉ×ÎÁÑ ÏÐÔÉËÁ}
|
||
\only<1>{\begin{block}{}
|
||
Horace W. Babcock, 1953 "--- ÔÅÏÒÉÑ áï. âÕÒÎÏÅ ÒÁÚ×ÉÔÉÅ × 90-È × ÒÁÍËÁÈ ÈÏÌÏÄÎÏÊ ×ÏÊÎÙ.
|
||
éÓËÕÓÓÔ×ÅÎÎÁÑ Ú×ÅÚÄÁ, tip-tilt ÚÅÒËÁÌÏ, ÄÅÆÏÒÍÉÒÕÅÍÏÅ ÚÅÒËÁÌÏ, ÄÅÌÉÔÅÌØ ÐÕÞËÁ, ÄÁÔÞÉË ×ÏÌÎÏ×ÏÇÏ
|
||
ÆÒÏÎÔÁ.
|
||
\end{block}\img[0.8]{Adaptive_optics_system_full}}
|
||
\only<2>{\smimg[0.5]{VLTdefmir}\smimg[0.5]{Ferrofluid_Deformable_mirror}}
|
||
\only<3>{\vspace*{-1em}\begin{block}{}
|
||
$30\div60\,$mas. éÓËÕÓÓÔ×ÅÎÎÙÅ Ú×ÅÚÄÙ: Ú×ÅÚÄÙ òÜÌÅÑ (ÂÌÉÖÎÉÊ éë, $15\div25$~ËÍ) É
|
||
ÎÁÔÒÉÅ×ÙÅ ($80\div100$~ËÍ, 589~ÎÍ).
|
||
\end{block}
|
||
\img{cfht_adaptive_optics}\textcolor{black}{ôÏÌØËÏ ÄÌÑ ÑÒËÉÈ ÏÂßÅËÔÏ×!}}
|
||
\only<4>{\img[0.85]{VLT_artif_star}}
|
||
\end{blueframe}
|
||
|
||
\begin{frame}{Lucky-imaging, Superresolution}
|
||
\smimg[0.33]{Lucky_Single_Exposure_Strehl_16Percent}\hfil
|
||
\smimg[0.33]{Lucky_sum_all}\hfil
|
||
\smimg[0.33]{Lucky_best_1percent_averaging}
|
||
\begin{block}{}
|
||
ëÕÂ ÄÁÎÎÙÈ Ó ÜËÓÐÏÚÉÃÉÑÍÉ $10\div50\,$ÍÓ.
|
||
|
||
óÏ×ÍÅÝÅÎÉÅ ÓÎÉÍËÏ× Ó ÎÁÉÍÅÎØÛÉÍ ÞÉÓÌÏÍ ûÔÒÅÌÑ.
|
||
|
||
õÓÒÅÄÎÅÎÉÅ.
|
||
|
||
éÔÏÇ: ÂÙÌÏ 900\,mas, ÓÔÁÌÏ 40!
|
||
|
||
äÌÑ ÍÁÌÙÈ ÔÅÌÅÓËÏÐÏ× ($D\le r_0$) ÜÔÏ Superresolution.
|
||
\end{block}
|
||
\end{frame}
|
||
|
||
\begin{frame}{}
|
||
\img[0.85]{optelcomp}
|
||
\end{frame}
|
||
|
||
\section{ëÏÓÍÉÞÅÓËÉÅ ÔÅÌÅÓËÏÐÙ}
|
||
\begin{frame}{ëÏÓÍÉÞÅÓËÉÅ ÔÅÌÅÓËÏÐÙ}
|
||
\begin{columns}
|
||
\column{0.6\textwidth}
|
||
\img{Hipparcos-testing-estec}
|
||
\column{0.4\textwidth}
|
||
\begin{block}{}
|
||
1989--1993, Hipparcos "--- High Precision Parallax Collecting Satellite. 29-ÓÍ ÔÅÌÅÓËÏÐ!
|
||
|
||
1mas. ëÁÔÁÌÏÇÉ Hipparcos (>118\,ÔÙÓ, 1997), Tycho (1\,ÍÌÎ, 1997) É Tycho-2 (2.5\,ÍÌÎ, 2000,
|
||
ÂÏÌÅÅ ÔÏÞÎÙÊ).
|
||
|
||
óÌÅÄÕÀÝÁÑ "--- ÍÉÓÓÉÑ Gaia (2013, $1.45\times0.5\,$Í).s
|
||
\end{block}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\begin{frame}{}
|
||
\vspace*{-1em}
|
||
\img[0.6]{HST-SM4}\vspace*{-1em}
|
||
\begin{block}{ôÅÌÅÓËÏÐ ÉÍ.~èÁÂÂÌÁ}
|
||
2.4~Í ÚÅÒËÁÌÏ.
|
||
|
||
1978 "--- ÓÔÁÒÔÏ×ÏÅ ÆÉÎÁÎÓÉÒÏ×ÁÎÉÅ, 36~ÍÌÎ.ÄÌÒ.
|
||
|
||
1986 "--- ÏÂÝÉÊ ÂÀÄÖÅÔ ÐÒÏÅËÔÁ ×ÙÒÏÓ ÄÏ 1.175~ÍÌÒÄ.ÄÌÒ.
|
||
|
||
25 ÁÐÒÅÌÑ 1990~Ç. "--- ÚÁÐÕÓË "--- $\Sum$ 2.5~ÍÌÒÄ.ÄÌÒ.
|
||
|
||
1999 "--- ÏËÏÌÏ 6~ÍÌÒÄ.ÄÌÒ. + 593~ÍÌÎ.Å×Ò. ÏÔ åëá.
|
||
|
||
þÅÔÙÒÅ ÜËÓÐÅÄÉÃÉÉ.
|
||
\end{block}
|
||
\end{frame}
|
||
|
||
\begin{frame}{}
|
||
\img{Hubble_Probes_the_Early_Universe}
|
||
\end{frame}
|
||
|
||
\begin{frame}{}
|
||
\begin{columns}
|
||
\column{0.6\textwidth}\vspace*{-2em}
|
||
\img{Kepler_Space_Telescope}
|
||
\column{0.4\textwidth}
|
||
\begin{block}{ôÅÌÅÓËÏÐ ëÅÐÌÅÒÁ}
|
||
2009--2013, 2013--, ÐÏÉÓË ÜËÚÏÐÌÁÎÅÔ É ÐÅÒÅÍÅÎÎÙÈ Ú×ÅÚÄ. 0.95~Í ÁÐÅÒÔÕÒÁ, ÚÅÒËÁÌÏ 1.4~Í (ËÁÍÅÒÁ
|
||
ûÍÉÄÔÁ).
|
||
|
||
42 ðúó 2200x1024.
|
||
|
||
$\sim0.5$~ÍÌÒÄ.ÄÌÒ.
|
||
|
||
ãÅÌØ "--- 13.2\,ÍÌÎ. Ú×ÅÚÄ. ôÏÌØËÏ × 2009\,Ç ÂÙÌÏ ÏÂÎÁÒÕÖÅÎÏ 7500 ÐÅÒÅÍÅÎÎÙÈ Ú×ÅÚÄ × ÓÐÉÓËÅ ÃÅÌÅÊ
|
||
ÎÁ ÐÏÉÓËÉ ÜËÚÏÐÌÁÎÅÔ.
|
||
|
||
ë ÍÁÀ 2016 ÏÂÎÁÒÕÖÅÎÏ 1284 ÐÌÁÎÅÔÙ (ÉÚ ÎÉÈ 550 ËÁÍÅÎÎÙÈ, 9 × ÏÂÉÔÁÅÍÏÊ ÚÏÎÅ).
|
||
\end{block}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\begin{frame}{}
|
||
\img[0.6]{Space_telescopes}
|
||
\end{frame}
|
||
|
||
\begin{frame}{ïÐÔÉÞÅÓËÉÅ ÎÅÂÙÌÉÃÙ}
|
||
<<çÉÐÅÒÂÏÌÏÉÄ ÉÎÖÅÎÅÒÁ çÁÒÉÎÁ>> "--- Ó×ÅÄÅÎÉÅ ÐÏÔÏËÁ ÉÚÌÕÞÅÎÉÑ × Ó×ÅÒÈÔÏÎËÉÊ ÐÕÞÏË: ÎÕÌÅ×ÏÊ ÒÁÚÍÅÒ
|
||
ÏÓ×ÅÔÉÔÅÌÑ, ÏÔÓÕÔÓÔ×ÉÅ ÁÂÅÒÒÁÃÉÊ, ÏÔÓÕÔÓÔ×ÉÅ ÄÉÆÒÁËÃÉÉ.
|
||
|
||
úÁ ÂÏÌØÛÏÅ ÐÏÌÅ ÚÒÅÎÉÑ ÐÒÉÈÏÄÉÔÓÑ ÐÌÁÔÉÔØ ÍÁÌÙÍ ÕÓÉÌÅÎÉÅÍ. úÁËÏÎ ìÁÇÒÁÎÖÁ--çÅÌØÍÇÏÌØÃÁ: $\alpha
|
||
yn=\alpha' y'n'$.
|
||
|
||
îÅÏÂÒÁÔÉÍÙÅ Ñ×ÌÅÎÉÑ: ÄÉÆÒÁËÃÉÑ, ÒÁÓÓÅÑÎÉÅ, ÐÏÇÌÏÝÅÎÉÅ.
|
||
|
||
\textbf{õÇÌÏ×ÏÅ Õ×ÅÌÉÞÅÎÉÅ ÔÅÌÅÓËÏÐÁ}. ú×ÅÚÄÙ ($\Delta$~-- ÚÒÁÞÏË ÇÌÁÚÁ):
|
||
$$\frac{L}{L_0}=\left(\frac{D}{D_{out}}\right)^2\left(\frac{D_{out}}{\Delta}\right)^2=
|
||
\left(\frac{D}{\Delta}\right)^2.$$
|
||
ïÄÎÁËÏ, ËÁÞÅÓÔ×Ï ÉÚÏÂÒÁÖÅÎÉÑ: seeing$\,\sim1''$ $\Arr$ $1'$. îÅÔ ÓÍÙÓÌÁ × Õ×ÅÌÉÞÅÎÉÉ ÂÏÌØÛÅ
|
||
$\times120$.
|
||
|
||
ðÌÁÎÅÔÙ É ÔÕÍÁÎÎÏÓÔÉ: ÐÒÉ ÒÁ×ÎÙÈ Õ×ÅÌÉÞÅÎÉÑÈ ÑÒËÏÓÔØ ÐÒÏÐÏÒÃÉÏÎÁÌØÎÁ $D^2$.
|
||
|
||
äÌÑ ×ÉÚÕÁÌØÎÙÈ ÎÁÂÌÀÄÅÎÉÊ ÎÅÔ ÓÍÙÓÌÁ ÉÓÐÏÌØÚÏ×ÁÔØ ÔÅÌÅÓËÏÐ ÂÏÌÅÅ 0.5\,Í!!!
|
||
|
||
á ÍÏÖÎÏ ÌÉ Õ×ÉÄÅÔØ ÓÌÅÄÙ ÁÍÅÒÉËÁÎÃÅ× ÎÁ ìÕÎÅ? 50-ÍÅÔÒÏ×ÙÊ ÔÅÌÅÓËÏÐ Ó ÉÄÅÁÌØÎÏÊ ÏÐÔÉËÏÊ ÎÁ ÏÒÂÉÔÅ
|
||
"--- ÚÁÐÒÏÓÔÏ!
|
||
\end{frame}
|
||
|
||
\begin{frame}{óÐÁÓÉÂÏ ÚÁ ×ÎÉÍÁÎÉÅ!}
|
||
\centering
|
||
\begin{minipage}{5cm}
|
||
\begin{block}{mailto}
|
||
eddy@sao.ru\\
|
||
edward.emelianoff@gmail.com
|
||
\end{block}\end{minipage}
|
||
\end{frame}
|
||
|
||
\section{òÁÚÎÏÅ}
|
||
\begin{frame}{ôÅÌÅÓËÏÐ ËÁË ËÏÎÃÅÎÔÒÁÔÏÒ ÜÎÅÒÇÉÉ. úÅÒËÁÌÏ}
|
||
\only<1,2>{\begin{block}{áÒÈÉÍÅÄ}
|
||
<<çÉÐÅÒÂÏÌÏÉÄ>> (212\,× ÄÏ Î.Ü.) "--- ÐÏÐÙÔËÁ ÓÖÅÞØ ÏÓÁÄÉ×ÛÉÊ ÒÉÍÓËÉÊ ÆÌÏÔ ÐÏÄ óÉÒÁËÕÚÁÍÉ ×Ï ×ÒÅÍÑ 2~ÐÕÎÉÞÅÓËÏÊ ×ÏÊÎÙ (218--201\,ÇÇ ÄÏ Î.Ü.).
|
||
\end{block}}
|
||
\only<1>{\img[0.7]{Giperboloid-Arhimeda}}
|
||
\only<2>{\img[0.85]{archimed}}
|
||
\only<3>{\begin{block}{}
|
||
úÁÖÖÅÎÉÅ ÏÌÉÍÐÉÊÓËÏÇÏ ÏÇÎÑ.
|
||
\end{block}\img[0.76]{olympic_torch_lighting}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{ôÅÌÅÓËÏÐ ËÁË ËÏÎÃÅÎÔÒÁÔÏÒ ÜÎÅÒÇÉÉ. ìÉÎÚÁ}
|
||
\begin{columns}
|
||
\column{0.45\textwidth}
|
||
\begin{defin}\textbf{ìÉÎÚÁ} "--- ÏÔ ÌÁÔ. <<lens>>~-- ÞÅÞÅ×ÉÃÁ.\end{defin}
|
||
\begin{block}{}
|
||
ðØÅÓÁ áÒÉÓÔÏÆÁÎÁ <<ïÂÌÁËÁ>> (424\,Ç. ÄÏ Î.Ü.) "--- ÄÏÂÙÞÁ ÏÇÎÑ.
|
||
|
||
äÒÅ×ÎÉÊ òÉÍ. ðÌÉÎÉÊ ÓÔÁÒÛÉÊ (23--79\,ÇÇ. Î.Ü.) "--- ÄÏÂÙÞÁ ÏÇÎÑ, ËÏÒÒÅËÃÉÑ ÚÒÅÎÉÑ (ÉÍÐÅÒÁÔÏÒ îÅÒÏÎ, ×ÏÇÎÕÔÙÊ ÉÚÕÍÒÕÄ).
|
||
|
||
áÌØÈÁÚÅÎ (965--1038\,ÇÇ. Î.Ü.) "--- ÔÒÁËÔÁÔ ÐÏ ÏÐÔÉËÅ, ÆÏÒÍÉÒÏ×ÁÎÉÅ ÉÚÏÂÒÁÖÅÎÉÑ ÇÌÁÚÏÍ.
|
||
|
||
1280-Å ÇÏÄÙ, éÔÁÌÉÑ (óÁÌØ×ÉÎÏ Ä'áÒÍÁÔÅ) "--- ÏÞËÉ.
|
||
\end{block}
|
||
\column{0.5\textwidth}\img{Nimrud_lens_British_Museum}
|
||
\begin{block}{}ìÉÎÚÁ îÉÍÒÕÄÁ (750--710\,ÇÇ. ÄÏ Î.Ü.). îÉÍÒÕÄ "--- ÏÄÎÁ ÉÚ ÄÒÅ×ÎÉÈ ÓÔÏÌÉà áÓÓÉÒÉÉ.\end{block}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\begin{frame}{ó×ÅÔÏ×ÁÑ ÜÎÅÒÇÅÔÉËÁ}
|
||
\textbf{óÌÀÓÁÒÅ× ç.ç.} ï ×ÏÚÍÏÖÎÏÍ É ÎÅ×ÏÚÍÏÖÎÏÍ × ÏÐÔÉËÅ (1-Å ÉÚÄ. 1944, 2-Å ÉÚÄ. 1957).\\
|
||
\textbf{óÔÅÐÁÎÏ× â.é.} ÷×ÅÄÅÎÉÅ × ÓÏ×ÒÅÍÅÎÎÕÀ ÏÐÔÉËÕ\ldots, 1989.\\[1em]
|
||
íÁËÓÉÍÁÌØÎÙÊ ÐÏÔÏË ÏÔ óÏÌÎÃÁ: 2\,ËÁÌ/(ÍÉÎ$\cdot$ÓÍ${}^2$) (0.14\,÷Ô) $\Arr$ áþô ÎÁÇÒÅÅÔÓÑ ÎÅ ×ÙÛÅ
|
||
$120^\circ$C (0.16\,÷Ô/ÓÍ$^2$). ÷ÏÓÐÌÁÍÅÎÅÎÉÅ ÄÒÅ×ÅÓÉÎÙ "--- $500\div700^\circ$C ($2\div5\,$÷Ô).
|
||
\textbf{áÌØÂÅÄÏ}! $\Arr$ $20\div40\,$ÒÁÚ ×ÙÛÅ ÏÓ×ÅÝÅÎÎÏÓÔÉ ÏÔ óÏÌÎÃÁ (É ÄÅÓÑÔËÉ ÍÉÎÕÔ)! íÇÎÏ×ÅÎÎÏÅ
|
||
×ÏÓÐÌÁÍÅÎÅÎÉÅ "--- ÓÏÔÎÉ ×ÁÔÔ!
|
||
|
||
äÉÁÍÅÔÒ ÉÚÏÂÒÁÖÅÎÉÑ óÏÌÎÃÁ $d=F/110$ $\Arr$ ×ÙÉÇÒÙÛ × ÏÓ×ÅÝÅÎÎÏÓÔÉ:
|
||
$\dfrac{E}{E_0}=\bigl(\dfrac{110\cdot D}{F}\bigr)^2$ $\Arr$ Ó×ÅÔÏÓÉÌÁ $D/F\ge1/2$!
|
||
|
||
3000 <<ÚÁÊÞÉËÏ×>> × ÏÄÎÕ ÔÏÞËÕ! îÏ ÁÌØÂÅÄÏ ÂÅÌÏÊ ËÒÁÓËÉ ÄÏ 80\%!!!
|
||
|
||
1747, ÆÒ. ÎÁÔÕÒÁÌÉÓÔ âÀÆÆÏÎ ÐÏÓÔÒÏÉÌ ÚÁÖÉÇÁÔÅÌØÎÙÊ ÐÒÉÂÏÒ ÉÚ 168 ÚÅÒËÁÌ $15\times20/,$ÓÍ (Ó
|
||
ÉÎÄÉ×ÉÄÕÁÌØÎÙÍÉ ÏÐÒÁ×ÁÍÉ). úÁ ÎÅÓËÏÌØËÏ ÍÉÎÕÔ ÎÁ ÒÁÓÓÔÏÑÎÉÉ 47\,Í ÚÁÇÏÒÅÌÁÓØ ÓÍÏÌÉÓÔÁÑ ÄÏÓËÁ (ÐÏÞÔÉ
|
||
áþô). $E/E_0=36$. \\[1em]
|
||
<<úÎÁÍÑ-2>> + <<îÏ×ÙÊ Ó×ÅÔ>>, 4 ÆÅ×ÒÁÌÑ 1993. ðÁÒÕÓ ÄÉÁÍÅÔÒÏÍ 20\,Í (ÓÅËÔÏÒÁ). äÉÁÍÅÔÒ ÐÑÔÎÁ 8ËÍ,
|
||
ÏÓ×ÅÝÅÎÎÏÓÔØ ÓÒÁ×ÎÉÍÁ Ó ÐÏÌÎÏÊ ìÕÎÏÊ.
|
||
\end{frame}
|
||
|
||
\begin{blueframe}{çÌÁ×ÎÙÅ ÐÌÏÓËÏÓÔÉ É ËÁÒÄÉÎÁÌØÎÙÅ ÔÏÞËÉ}
|
||
\only<1>{\vspace{-1em}
|
||
\begin{columns}\column{0.6\textwidth}
|
||
\begin{block}{}F/F'~-- ÐÅÒÅÄÎÑÑ É ÚÁÄÎÑÑ ÆÏËÁÌØÎÙÅ ÔÏÞËÉ; P/P'~-- ÐÅÒÅÄÎÑÑ É ÚÁÄÎÑÑ ÇÌÁ×ÎÙÅ ÔÏÞËÉ; V/V'~--ÐÅÒÅÄÎÉÊ É ÚÁÄÎÉÊ ËÒÁÑ ÐÏ×ÅÒÈÎÏÓÔÉ; H/H'~-- ÐÅÒÅÄÎÑÑ É ÚÁÄÎÑÑ ÇÌÁ×ÎÙÅ ÐÌÏÓËÏÓÔÉ.\end{block}
|
||
\img{Lens_shapes}
|
||
\column{0.4\textwidth}
|
||
\img{Cardinal-points-1}
|
||
\end{columns}}
|
||
\only<2>{\begin{block}{}ðÏÓÔÒÏÅÎÉÅ ÉÚÏÂÒÁÖÅÎÉÊ.\end{block}
|
||
\begin{defin}\textbf{çÌÁ×ÎÁÑ ÐÌÏÓËÏÓÔØ} "--- ËÁÖÄÁÑ ÉÚ Ä×ÕÈ ÐÌÏÓËÏÓÔÅÊ, ÐÅÒÐÅÎÄÉËÕÌÑÒÎÙÈ ÏÐÔÉÞÅÓËÏÊ ÏÓÉ ÓÉÓÔÅÍÙ, ÉÚÏÂÒÁÖÁÀÝÉÈÓÑ ÏÄÎÁ × ÄÒÕÇÏÊ Ó ÌÉÎÅÊÎÙÍ Õ×ÅÌÉÞÅÎÉÅÍ, ÒÁ×ÎÙÍ ÅÄÉÎÉÃÅ. \textbf{ëÁÒÄÉÎÁÌØÎÙÅ ÔÏÞËÉ} "--- Ä×Å ÇÌÁ×ÎÙÅ ÔÏÞËÉ É Ä×Å ÔÏÞËÉ ÆÏËÕÓÁ.\end{defin}
|
||
\img{geolens1}}
|
||
\end{blueframe}
|
||
|
||
\begin{frame}{æÏÒÍÕÌÁ ÔÏÎËÏÊ ÌÉÎÚÙ}
|
||
\begin{block}{}
|
||
$\displaystyle\frac1{f}=(n-1)\left[\frac1{R_1}-\frac1{R_2}+\frac{(n-1)d}{nR_1 R_2}\right]$,
|
||
× ÐÒÉÂÌÉÖÅÎÉÉ ÔÏÎËÏÊ ÌÉÎÚÙ: $\displaystyle\frac1{f}\approx(n-1)\left[\frac1{R_1}-\frac1{R_2}\right]$
|
||
\end{block}
|
||
\img[0.8]{Lens1}
|
||
\end{frame}
|
||
|
||
\begin{blueframe}{äÉÓÐÅÒÓÉÑ}
|
||
\only<1>{\begin{block}{þÉÓÌÁ áÂÂÅ (ÐÏ ÆÒÁÕÎÇÏÆÅÒÏ×ÙÍ ÌÉÎÉÑÍ)}
|
||
$$V_d = \frac{n_d-1}{n_F-n_C},\quad V_e = \frac{n_e-1}{n_{F'}-n_{C'}}$$
|
||
ðÏËÁÚÁÔÅÌØ ÞÁÓÔÎÏÊ ÄÉÓÐÅÒÓÉÉ (PgF): $Pg_F = \dfrac{n_g-n_F}{n_F-n_C}$.
|
||
|
||
d~(He) -- 587.6\,ÎÍ, F~(H${}_\beta$) -- 486.1\ÎÍ, C~(H${}_\alpha$) -- 656.3\,ÎÍ,
|
||
e~(Hg) -- 546.1\,ÎÍ, F'~(Cd) -- 480.0\,ÎÍ, C'~(Cd) -- 643.9\,ÎÍ, g~(Hg) -- 435.8\,ÎÍ.
|
||
\end{block}\img[0.7]{CF}}
|
||
\only<2>{\begin{block}{}äÉÁÇÒÁÍÍÁ áÂÂÅ\end{block}\img[0.8]{Abbe-diagramm}}
|
||
\only<3>{\vspace{-1.4em}\begin{columns}\column{0.5\textwidth}
|
||
\begin{block}{óÈÅÍÁ ÏÂÒÁÚÏ×ÁÎÉÑ ÒÁÄÕÇÉ}
|
||
1)~ÓÆÅÒÉÞÅÓËÁÑ ËÁÐÌÑ\\
|
||
2)~×ÎÕÔÒÅÎÎÅÅ ÏÔÒÁÖÅÎÉÅ\\
|
||
3)~ÐÅÒ×ÉÞÎÁÑ ÒÁÄÕÇÁ\\
|
||
4)~ÐÒÅÌÏÍÌÅÎÉÅ\\
|
||
5)~×ÔÏÒÉÞÎÁÑ ÒÁÄÕÇÁ\\
|
||
6)~×ÈÏÄÑÝÉÊ ÌÕÞ Ó×ÅÔÁ\\
|
||
7)~ÈÏÄ ÌÕÞÅÊ ÐÒÉ ÆÏÒÍÉÒÏ×ÁÎÉÉ ÐÅÒ×ÉÞÎÏÊ ÒÁÄÕÇÉ\\
|
||
8)~ÈÏÄ ÌÕÞÅÊ ÐÒÉ ÆÏÒÍÉÒÏ×ÁÎÉÉ ×ÔÏÒÉÞÎÏÊ ÒÁÄÕÇÉ\\
|
||
9)~ÎÁÂÌÀÄÁÔÅÌØ\\
|
||
10)~ÏÂÌÁÓÔØ ÆÏÒÍÉÒÏ×ÁÎÉÑ ÐÅÒ×ÉÞÎÏÊ ÒÁÄÕÇÉ\\
|
||
11)~ÏÂÌÁÓÔØ ÆÏÒÍÉÒÏ×ÁÎÉÑ ×ÔÏÒÉÞÎÏÊ ÒÁÄÕÇÉ\\
|
||
12)~ÏÂÌÁËÏ ËÁÐÅÌÅË
|
||
\end{block}
|
||
\column{0.48\textwidth}
|
||
\img{Rainbow_formation}
|
||
\end{columns}}
|
||
\end{blueframe}
|
||
|
||
\begin{blueframe}{äÉÆÒÁËÃÉÑ}
|
||
\begin{block}{}
|
||
äÉÆÒÁËÃÉÑ æÒÁÕÎÇÏÆÅÒÁ (× ÄÁÌØÎÅÊ ÚÏÎÅ):\\
|
||
$\dfrac{W^{2}}{L\lambda }\ll 1$, W~-- ÛÉÒÉÎÁ ÝÅÌÉ, $L$~--ÒÁÓÓÔÏÑÎÉÅ.
|
||
$\Phi=\dfrac{W^{2}}{L\lambda }$~-- ÞÉÓÌÏ æÒÅÎÅÌÑ.\\
|
||
äÉÆÒÁËÃÉÑ æÒÅÎÅÌÑ: $\Phi>1$.\end{block}\img[0.69]{fresnel_zones}
|
||
\end{blueframe}
|
||
|
||
\begin{frame}{òÅÆÒÁËÔÏÒÙ}
|
||
\only<1>{çÁÌÉÌÅÑ\\\vspace*{-2em}\img[0.6]{galileoscopes}\vspace*{-1em}\img[0.6]{galileo_rays}}
|
||
\only<2>{ëÅÐÌÅÒÁ\img[0.9]{keplerian_ray}}
|
||
\only<3>{ñÎÁ çÅ×ÅÌÉÑ (1641, 46Í ÆÏËÕÓ)\\\vspace*{-0.4em}\img[0.75]{hevelius_scope}}
|
||
\only<4>{\begin{columns}\column{0.6\textwidth}
|
||
\vspace{-1em}\img[0.9]{Huygens_broths_scope}
|
||
\column{0.4\textwidth}\begin{block}{}
|
||
çÀÊÇÅÎÓÁ (×ÔÏÒÁÑ ÐÏÌÏ×ÉÎÁ XVII~×ÅËÁ, 37Í)\\
|
||
1655 "--- ËÏÌØÃÁ óÁÔÕÒÎÁ, ôÉÔÁÎ;\\
|
||
1657 "--- ÍÁÑÔÎÉËÏ×ÙÅ ÞÁÓÙ;\\
|
||
1659 "--- ÔÕÍÁÎÎÏÓÔØ ïÒÉÏÎÁ;\\
|
||
1675 "--- ÞÁÓÏ×ÁÑ ÓÐÉÒÁÌØ.
|
||
\end{block}\end{columns}}
|
||
\only<5>{Francois Deloncle, 1.25Í "--- ÐÁÒÉÖÓËÁÑ ×ÙÓÔÁ×ËÁ 1900\,Ç, $F=57\,$Í.\img[0.8]{Great_Ex_Telescope_Telescope}}
|
||
\end{frame}
|
||
|
||
\begin{blueframe}{òÅÆÌÅËÔÏÒÙ}
|
||
\only<1>{\begin{block}{}îØÀÔÏÎÁ (1668)\end{block}\begin{columns}
|
||
\column{0.49\textwidth}\img{NewtonsTelescopeReplica}
|
||
\column{0.49\textwidth}\img{Newtonian_telescope}
|
||
\end{columns}}
|
||
\only<2>{\begin{block}{}çÅÒÛÅÌÑ--ìÏÍÏÎÏÓÏ×Á (1772/1762)\end{block}\begin{columns}\column{0.49\textwidth}
|
||
\img{early-herschel-40ft}\column{0.49\textwidth}\img{Herschel-Lomonosov_reflecting_telescope}
|
||
\end{columns}}
|
||
\only<3>{\begin{block}{}çÒÅÇÏÒÉ (ÐÒÅÄÌÏÖÅÎÁ, ÎÏ ÎÅ ÐÏÓÔÒÏÅÎÁ × 1663: ÐÁÒÁÂÏÌÁ + ÜÌÌÉÐÓ)\end{block}
|
||
\begin{columns}\column{0.49\textwidth}\img{Gregorian_telescope}
|
||
\column{0.49\textwidth}\img{Gregorian_telescopes}\end{columns}}
|
||
\only<4>{\begin{block}{}ëÁÓÓÅÇÒÅÎÁ (1672, ×ÁÒÉÁÃÉÑ "--- òÉÔÞÉ--ËÒÅÔØÅÎ, 1910, 2 ÇÉÐÅÒÂÏÌÙ)\end{block}
|
||
\img{Cassegrain_telescope}}
|
||
\only<5>{\begin{block}{}ûÍÉÄÔ--ëÁÓÓÅÇÒÅÎ (1950-Å "--- ÇÉÇÁÎÔÓËÉÅ ÒÁÚÍÅÒÙ ÐÏÌÑ)\end{block}\img{schmidt}}
|
||
\end{blueframe}
|
||
|
||
\begin{frame}{ðÏÌÉÎÏÍÙ ãÅÒÎÉËÅ}
|
||
\only<1>{\begin{block}{}þÅÔÎÙÅ ÐÏÌÉÎÏÍÙ ãÅÒÎÉËÅ:
|
||
$Z_n^m(\rho, \varphi)=R_n^m(\rho )\,\cos(m\varphi)$,\\
|
||
îÅÞÅÔÎÙÅ:
|
||
$Z_n^{-m}(\rho, \varphi)=R_n^m(\rho)\,\sin(m\,\varphi)$,\\
|
||
ÇÄÅ $m$ É $n$~-- ÐÏÌÏÖÉÔÅÌØÎÙÅ ÃÅÌÙÅ, $n\ge m$;\\
|
||
$\varphi$~-- ÕÇÌÏ×ÁÑ ËÏÏÒÄÉÎÁÔÁ;
|
||
$\rho$~-- ÒÁÄÉÕÓ-×ÅËÔÏÒ ($0\le\rho\le1$);
|
||
$R^m_n$~-- ÒÁÄÉÁÌØÎÙÅ ÐÏÌÉÎÏÍÙ.\\
|
||
ðÏÌÉÎÏÍÙ ãÅÒÎÉËÅ ÏÒÔÏÎÏÒÍÁÌØÎÙ, $|Z_n^m(\rho, \varphi)|\leq 1$.\\
|
||
$\displaystyle R^m(\rho)=\sum_{k=0}^{\tfrac{n-m}{2}}\frac{(-1)^{k}\,(n-k)!}{k!\left(\tfrac {n+m}{2}-k\right)!\left(\tfrac {n-m}{2}-k\right)!}\;\rho^{n-2\,k}$ ÄÌÑ ÞÅÔÎÙÈ $n-m$,\\
|
||
$R_n^m\equiv 0$ ÄÌÑ ÎÅÞÅÔÎÙÈ $n-m$.
|
||
\end{block}
|
||
}
|
||
\only<2>{\img[0.6]{Zernike_polynomials2}}
|
||
\only<3>{\begin{table}\begin{tabular}{|c|c|c|}\hline
|
||
\bf Z& $\mathbf{Z_j}$ & \bf Name \\\hline
|
||
$Z_0^0$ & 1& óÍÅÝÅÎÉÅ \\\hline
|
||
$Z_1^{-1}$ & $2\rho\sin\varphi$ & ÷ÅÒÔÉËÁÌØÎÙÊ ÎÁËÌÏÎ \\\hline
|
||
$Z_1^1$ & $2\rho\cos\varphi$ & çÏÒÉÚÏÎÔÁÌØÎÙÊ ÎÁËÌÏÎ \\\hline
|
||
$Z_2^{-2}$ & $\sqrt6\rho^2\sin2\varphi$ & áÓÔÉÇÍÁÔÉÚÍ (ËÏÓÏÊ)\\\hline
|
||
$Z_2^{0}$ & $\sqrt3(2\rho^2-1)$ & äÅÆÏËÕÓ\\\hline
|
||
$Z_3^{-1}$ & $\sqrt8(3\rho^3-2\rho)\sin\varphi$ & ÷ÅÒÔÉËÁÌØÎÁÑ ËÏÍÁ\\\hline
|
||
$Z_3^1$ & $\sqrt8(3\rho^3-2\rho)\cos\varphi$ & çÏÒÉÚÏÎÔÁÌØÎÁÑ ËÏÍÁ\\\hline
|
||
$Z_4^0$ & $\sqrt5(6\rho^4-6\rho^2+1)$ & óÆÅÒÉÞÅÓËÁÑ ÁÂÅÒÒÁÃÉÑ\\\hline
|
||
\end{tabular}\end{table}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{íÅÔÏÄ çÁÒÔÍÁÎÎÁ}
|
||
\only<1>{óÕÔØ ÍÅÔÏÄÉËÉ \img[0.9]{hartmann}}
|
||
\only<2>{üËÒÁÎ 3.5-Í ÔÅÌÅÓËÏÐÁ (WIYN, ëÉÔÔ-ðÉË)\img[0.9]{WIYN_HartmanScreen_10-91_b}}
|
||
\only<3>{üËÒÁÎ âôá \img[0.9]{BTA_hartm}}
|
||
\only<4>{÷ÏÌÎÏ×ÏÊ ÆÒÏÎÔ \img[0.6]{mirr_BTA_h}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{íÅÔÏÄ ûÁËÁ-çÁÒÔÍÁÎÎÁ}
|
||
\only<1>{\img{shag}}
|
||
\only<2,3,4>{\begin{columns}\column{0.48\textwidth}
|
||
\begin{block}{ûÁË-çÁÒÔÍÁÎÎ ÎÁ âôá}
|
||
ïïï <<÷ÉÚÉÏÎÉËÁ>>, éðìéô òáî.
|
||
ðÒÉÍÅÎÑÅÔÓÑ Ó 2015 ÇÏÄÁ.\\
|
||
éÍÅÅÔ ÂÏÌÅÅ ×ÙÓÏËÏÅ ÒÁÚÒÅÛÅÎÉÅ.\\
|
||
åÄÉÎÓÔ×ÅÎÎÙÊ ÄÏÓÔÕÐÎÙÊ ÄÌÑ âôá ÍÅÔÏÄ.\\
|
||
òÁÓÔÒ $60\times60$ APO-Q-P1000-F40 ($61\times61\,$ÍÍ).
|
||
\end{block}
|
||
\column{0.5\textwidth}
|
||
\only<2>{\img{mlm_MonolithicLensletModule}}
|
||
\only<3>{\img{SHA_BTA}}
|
||
\only<4>{\img{favaris01}}\end{columns}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{Zemax}
|
||
\only<1>{\img{mirr_Coma}}
|
||
\only<2>{\img{fft-mtf}}
|
||
\only<3>{\img{matrix-spot}}
|
||
\only<4>{\img{ray-fan}}
|
||
\end{frame}
|
||
|
||
\begin{frame}{òÁÄÉÏÉÎÔÅÒÆÅÒÏÍÅÔÒÉÑ}
|
||
\begin{columns}
|
||
\column{0.5\textwidth}\img{cross_cor}\column{0.48\textwidth}
|
||
\begin{block}{ó×ÅÒÈÄÌÉÎÎÁÑ ÂÁÚÁ}òóäâ--ÉÎÔÅÒÆÅÒÏÍÅÔÒ. äÁÎÎÙÅ ÓÏÂÉÒÁÀÔÓÑ ÎÅÚÁ×ÉÓÉÍÏ. äÁÌÅÅ
|
||
ÏÓÕÝÅÓÔ×ÌÑÅÔÓÑ ËÏÒÒÅÌÑÃÉÏÎÎÁÑ ÏÂÒÁÂÏÔËÁ. ë×ÁÚÁÒ--ë÷ï.
|
||
\end{block}\end{columns}\img[0.9]{quasar}
|
||
\end{frame}
|
||
|
||
%
|
||
\end{document}
|
||
%
|