Add image processing - 2

This commit is contained in:
Edward Emelianov 2021-12-12 15:00:57 +03:00
parent 3648795f0c
commit ef040e5ebd
14 changed files with 529 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,509 @@
\documentclass[10pt,pdf,hyperref={unicode}]{beamer}
\hypersetup{pdfpagemode=FullScreen}
\usepackage{lect}
\title[ëÏÍÐØÀÔÅÒÎÁÑ ÏÂÒÁÂÏÔËÁ. ìÅËÃÉÑ 7.]{ëÏÍÐØÀÔÅÒÎÁÑ ÏÂÒÁÂÏÔËÁ ÒÅÚÕÌØÔÁÔÏ× ÉÚÍÅÒÅÎÉÊ}
\subtitle{ìÅËÃÉÑ 7. ïÂÒÁÂÏÔËÁ ÉÚÏÂÒÁÖÅÎÉÊ, ÞÁÓÔØ 2}
\date{}
\def\pair#1#2{\ensuremath{\langle #1, #2\rangle}}
\begin{document}
% ôÉÔÕÌ
\begin{frame}
\maketitle
\end{frame}
% óÏÄÅÒÖÁÎÉÅ
\begin{frame}
\tableofcontents
\end{frame}
\section{÷ÅÊ×ÌÅÔÙ}
\begin{frame}{÷ÅÊ×ÌÅÔÙ}
\only<1>{ \begin{block}{òÁÚÌÏÖÅÎÉÅ ÆÕÎËÃÉÉ ÐÏ ÂÁÚÉÓÕ}
ðÒÅÏÂÒÁÚÏ×ÁÎÉÅ æÕÒØÅ É ÌÀÂÙÅ ÄÒÕÇÉÅ ÐÒÅÏÂÒÁÚÏ×ÁÎÉÑ $f(x)$ ÐÏ ÂÁÚÉÓÕ $r(x,u)$ × 1-ÍÅÒÎÏÍ ×ÁÒÉÁÎÔÅ
ÍÏÖÎÏ ÐÒÅÄÓÔÁ×ÉÔØ ×ÙÒÁÖÅÎÉÅÍ
$$T(u)=\sum_{x=0}^{N-1}f(x)r(x,u),\qquad
f(x)=\sum_{u=0}^{N-1}T(u)s(x,u).$$
÷ ÍÁÔÒÉÞÎÏÍ ×ÉÄÅ: $\B{t}=\B{Rf}$ É $\B{f}=\B{St}$. ïÞÅ×ÉÄÎÏ, ÞÔÏ $\B{S}=\B{R}^{-1}$ É ÏÂÒÁÔÎÏ.
åÓÌÉ ÂÁÚÉÓ $\B{S}$ ÏÒÔÏÎÏÒÍÉÒÏ×ÁÎ ($\B{S}^T\B{S}=\B{I}$), ÔÏ $\B{R}=\B{S}^T$.
÷ Ä×ÕÍÅÒÎÏÍ ×ÉÄÅ $s=s(x,y,u,v)$, ÐÏÌÏÖÉÍ, ÞÔÏ ÑÄÒÏ~--- ÒÁÚÄÅÌÑÅÍÏÅ É ÓÉÍÍÅÔÒÉÞÎÏÅ, Ô.Å.
$s=s(x,y)\cdot s(u,v)$. ÷ ÜÔÏÍ ÓÌÕÞÁÅ ÑÄÒÏ ÍÏÖÎÏ ÚÁÐÉÓÁÔØ × ×ÉÄÅ Ä×ÕÍÅÒÎÏÊ ÍÁÔÒÉÃÙ:
$$\B{T}=\B{SFS}^T, \qquad \B{F}=\B{S}^T\B{FS}.$$
\end{block}
}\only<2>{
\begin{block}{}
òÁÓÓÍÏÔÒÉÍ ÐÒÏÓÔÅÊÛÉÊ ÂÁÚÉÓ:
$$\B{s}_0=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix},\quad
\B{s}_1=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix};\qquad
\B{A}=(\B{s}_0 \B{s}_1)^{T}=\frac{1}{\sqrt{2}}\begin{pmatrix}1 & 1\\ 1 & -1\end{pmatrix}.$$
íÏÖÎÏ ÐÒÏ×ÅÒÉÔØ, ÞÔÏ ÄÁÎÎÙÊ ÂÁÚÉÓ~--- ÏÒÔÏÎÏÒÍÁÌØÎÙÊ.
äÌÑ ÐÒÑÍÏÕÇÏÌØÎÙÈ ÉÚÏÂÒÁÖÅÎÉÊ ÒÁÚÍÅÒÏÍ $M\times N$ ($M$~ÓÔÒÏË É $N$~ÓÔÏÌÂÃÏ×) ÐÉËÓÅÌÅÊ ÑÄÒÁ ÂÕÄÕÔ
ÉÍÅÔØ ÒÁÚÍÅÒÙ $M\times M$ É
$N\times N$:
$$\B{T}=\B{A}_M\B{FA}^T_N,\qquad \B{F}=\B{A}_M^T\B{TA}_N.$$
÷ ÓÌÕÞÁÅ ËÏÍÐÌÅËÓÎÏÇÏ ÂÁÚÉÓÁ $\B{T}=\B{AFA}^T$, ÎÏ $\B{F}=\B{A}^{*T}\B{TA}^*$.
\end{block}
}\only<3>{
\begin{block}{ìÏËÁÌÉÚÁÃÉÑ}
äÅÌØÔÁ-ÆÕÎËÃÉÑ ÌÏËÁÌÉÚÏ×ÁÎÁ ÐÏ ×ÒÅÍÅÎÉ, ÎÏ ÎÅ ÉÍÅÅÔ ÌÏËÁÌÉÚÁÃÉÉ ÐÏ ÞÁÓÔÏÔÅ; ËÏÍÐÌÅËÓÎÁÑ
ÓÉÎÕÓÏÉÄÁ~--- ÎÁÏÂÏÒÏÔ. ÷ÅÊ×ÌÅÔ ÉÍÅÅÔ ÌÏËÁÌÉÚÁÃÉÀ ËÁË ÐÏ ÞÁÓÔÏÔÅ, ÔÁË É ÐÏ ×ÒÅÍÅÎÉ.
\end{block}
\img{tfloc}
}\only<4>{
\begin{block}{÷ÅÊ×ÌÅÔ}
éÍÅÑ ÍÁÔÅÒÉÎÓËÉÊ ×ÅÊ×ÌÅÔ $\psi(t)$, ÚÁÄÁÄÉÍ ÂÁÚÉÓ ×ÅÊ×ÌÅÔÏ× ËÁË
$$\psi_{s,\tau}=2^{s/2}\psi(2^st-\tau).$$
äÌÑ ÄÉÓËÒÅÔÎÙÈ ÉÚÏÂÒÁÖÅÎÉÊ ÐÏÌÕÞÁÅÍ ÎÁÂÏÒ ÍÁÓÛÔÁÂÉÒÕÀÝÉÈ ÆÕÎËÃÉÊ:
$$\phi_{j,k}=2^{j/2}\phi(2^jx-k),$$
$k$~ÚÁÄÁÅÔ ÓÍÅÝÅÎÉÅ ×ÅÊ×ÌÅÔÁ, $j$~-- ÅÇÏ ÍÁÓÛÔÁÂ.
âÁÚÉÓ ×ÅÊ×ÌÅÔÏ× É ÍÁÓÛÔÁÂÉÒÕÀÝÉÈ ÆÕÎËÃÉÊ ÐÏÚ×ÏÌÑÅÔ ÐÒÏÉÚ×ÅÓÔÉ ÄÅËÏÍÐÏÚÉÃÉÀ ÉÚÏÂÒÁÖÅÎÉÊ.
ïÄÎÏÍÅÒÎÙÊ ÓÌÕÞÁÊ:
$$f(x)=\frac{1}{2}\left\{T_\phi(0,0)\phi(x)+T_\psi(0,0)\psi_{0,0}(x)+T_\psi(1,0)\psi_{1,0}(x)\cdots\right\}.$$
\end{block}
}\only<5>{
íÁÓÛÔÁÂÉÒÕÀÝÁÑ ÆÕÎËÃÉÑ èÁÁÒÁ: $\phi(x)=1$ ÐÒÉ $0\le x\le 1$.
\img{haarw}
}\only<6>{
÷ÅÊ×ÌÅÔ èÁÁÒÁ:
$$\psi(x)=\begin{cases}
1, & 0\le x< 0.5;\\
-1, & 0.5\le x < 1;\\
0, & \text{× ÏÓÔÁÌØÎÙÈ ÓÌÕÞÁÑÈ.}
\end{cases}$$
\img{haarx2}
}\only<7>{
ðÉÒÁÍÉÄÁ ÐÒÅÏÂÒÁÚÏ×ÁÎÉÊ
\img{wpiramid}
}\only<8>{
\img[0.6]{wpiram}
}
\end{frame}
\begin{frame}{}
\only<1>{\img[0.6]{pyramid}
\begin{block}{ðÉÒÁÍÉÄÁ ÉÚÏÂÒÁÖÅÎÉÊ}
ðÉÒÁÍÉÄÁ ÐÒÉÂÌÉÖÅÎÉÊ (ÁÐÐÒÏËÓÉÍÉÒÕÀÝÉÅ ËÏÜÆÆÉÃÉÅÎÔÙ), ÐÉÒÁÍÉÄÁ ÏÛÉÂÏË (ÄÅÔÁÌÉÚÉÒÕÀÝÉÅ ËÏÜÆÆÉÃÉÅÎÔÙ).
ðÉÒÁÍÉÄÁ ìÁÐÌÁÓÁ (ÔÏÌØËÏ ÐÉÒÁÍÉÄÁ ÏÛÉÂÏË, ËÏÍÐÒÅÓÓÉÑ); ÇÁÕÓÓÏ×Á ÐÉÒÁÍÉÄÁ (ÔÏÌØËÏ ÐÒÉÂÌÉÖÅÎÉÑ, ÓÉÎÔÅÚ
ÔÅËÓÔÕÒ).\end{block}}
\only<2>{\img[0.7]{lappyramid}}
\only<3>{\img[0.5]{orapple}\centerline{
ïÂßÅÄÉÎÅÎÉÅ ÐÉÒÁÍÉÄ ìÁÐÌÁÓÁ.}}
\end{frame}
\begin{frame}{÷ÅÊ×ÌÅÔÙ}
\only<1>{\img[0.6]{2d-haar-basis}}
\only<2>{\img[0.8]{wvpyramid01}}
\only<3>{\img[0.8]{wvpyramid02}}
\only<4>{\img[0.8]{wvpyramid}}
\only<5>{\img[0.8]{wvpyramid03}}
\end{frame}
\begin{frame}{ðÁËÅÔÙ ×ÅÊ×ÌÅÔÏ×}
\only<1>{\img[0.95]{wpack01}}
\only<2>{\img[0.95]{wpack02}}
\only<3>{\img[0.7]{wpack03}}
\only<4>{\img[0.8]{wpack04}\tiny (a) normal brain; (b) 2-level DWT of normal brain; (c) 2-level
DWPT of normal brain; (d) AD brain; (e) 2-level DWT of AD brain; (f) 2-level DWPT of AD brain.}
\end{frame}
\section{íÏÒÆÏÌÏÇÉÞÅÓËÉÅ ÏÐÅÒÁÃÉÉ}
\begin{frame}{íÏÒÆÏÌÏÇÉÞÅÓËÉÅ ÏÐÅÒÁÃÉÉ}
\only<1>{
\begin{block}{ïÓÎÏ×ÎÙÅ ÐÏÎÑÔÉÑ}
\begin{itemize}
\item ðÕÓÔØ $A$~-- ÎÅËÏÔÏÒÁÑ ÏÂÌÁÓÔØ ÎÁ ÂÉÎÁÒÎÏÍ ÉÚÏÂÒÁÖÅÎÉÉ, $a=(a_1,a_2)\in A$~-- ÔÏÞËÁ, ÅÊ
ÐÒÉÎÁÄÌÅÖÁÝÁÑ; ÉÎÔÅÎÓÉ×ÎÏÓÔØ × ÔÏÞËÅ $a$ ÏÂÏÚÎÁÞÉÍ ËÁË $v(a)$.
\item {\bf ïÂßÅËÔ}: $A=\{a\;|\;v(a)==1, \forall a \text{ 4/8-connected}\}$.
\item {\bf æÏÎ}: $B=\{b\;|\;b==0 \cup b\text{ not connected}\}$.
\item {\bf óÄ×ÉÇ}: $A_x=\{c\;|\;c=a+x, \forall a\in A\}$.
\item {\bf ïÔÒÁÖÅÎÉÅ}: $\hat A=\{c \;|\; c=-a, \forall a\in A\}$.
\item {\bf äÏÐÏÌÎÅÎÉÅ}: $A^C=\{c \;|\; c\notin A\}$.
\item {\bf óÕÍÍÁ}: $A+B=\{c \;|\; c\in (A\cup B)\}=A\cup B$.
\item {\bf òÁÚÎÏÓÔØ}: $A-B=\{c \;|\; c\in A, c\notin B\}=A \cap B^C$.
\item {\bf óÔÒÕËÔÕÒÎÙÊ ÜÌÅÍÅÎÔ}: ÐÏÄÏÂßÅËÔ, ÐÏ ËÏÔÏÒÏÍÕ ÐÒÏ×ÏÄÑÔÓÑ ÍÏÒÆÏÌÏÇÉÞÅÓËÉÅ ÏÐÅÒÁÃÉÉ.
\end{itemize}
\end{block}}
\only<2>{\img[0.8]{baseimop}}
\end{frame}
\begin{frame}{üÒÏÚÉÑ (ÕÓÅÞÅÎÉÅ)}
\begin{block}{}
$$A\ominus B=\{x \;|\; B_x\subseteq A\}\text{ ÉÌÉ }
A\ominus B=\{x \;|\; B_x\cap A^C=\varnothing\}\text{ ÉÌÉ }
A\ominus B=\bigcap_{b\in B}A_b
$$
\end{block}
\only<1>{\img[0.7]{erosion}}
\only<2>{\img[0.7]{erosion01}}
\only<3>{\img{erosion02}}
\end{frame}
\begin{frame}{äÉÌÁÔÁÃÉÑ (ÎÁÒÁÝÉ×ÁÎÉÅ)}
\begin{block}{}
$$A\oplus B = \{x \;|\; \hat B_z\cap A \ne\varnothing\} \text{ ÉÌÉ }
A\oplus B = \bigcup_{b\in B}A_b=\bigcup_{a\in A}B_a
$$
\end{block}
\only<1>{\img[0.7]{dilation}}
\only<2>{\img{dilation01}}
\end{frame}
\begin{frame}{ó×ÏÊÓÔ×Á}
\begin{block}{}
\centerline{ëÏÍÍÕÔÁÔÉ×ÎÏÓÔØ:}
$$A\oplus B = B\oplus A\qquad A\ominus B \ne B\ominus A$$
\centerline{áÓÓÏÃÉÁÔÉ×ÎÏÓÔØ:}
$$A\oplus (B\cup C)=(A\oplus B)\cup(A\oplus C)\qquad A\ominus (B\cup C)=(A\ominus B)\cap(A\ominus
C)$$
$$(A\ominus B)\ominus C = A\ominus(B\oplus C)$$
\centerline{ä×ÏÊÓÔ×ÅÎÎÏÓÔØ:}
$$(A\ominus B)^C=A^C\oplus\hat B\qquad
(A\oplus B)^C =A^C\ominus\hat B$$
\end{block}
\end{frame}
\begin{frame}{ïÔËÒÙÔÉÅ (ÒÁÚÍÙËÁÎÉÅ)}
\begin{block}{}$$A\circ B = (A\ominus B)\oplus B$$\end{block}
\img{opening01}
\end{frame}
\begin{frame}{úÁËÒÙÔÉÅ (ÚÁÍÙËÁÎÉÅ)}
\begin{block}{}
$$A\bullet B = (A\oplus B)\ominus B$$
\img{closing01}
\end{block}
\end{frame}
\begin{frame}{}
\only<1>{\img{opclos}}
\only<2>{\img{morph01}}
\end{frame}
\begin{frame}{<<Top hat>> É <<Bottom hat>>}
\begin{block}{}
$$A\hat\circ B = A\backslash (A\circ B), \qquad
A\hat\bullet B = (A\bullet B)\backslash A$$
\end{block}
\only<1>{\img[0.8]{tophat}}
\only<2>{\img[0.8]{bottomhat}}
\end{frame}
\begin{frame}{Hit-and-miss}
\only<1,2>{\begin{block}{}$$A \circledast B = (A\ominus B_1)\cap(A^C\ominus B_2),\quad\text{ÇÄÅ}$$
$$B_1=\{b \;|\; b\in B, b=1\},\; B_2=\{\tilde b \;|\; b\in B, b=0\}$$
\end{block}}
\only<1>{\img[0.8]{hitamiss01}}
\only<2>{\img[0.8]{hitamiss02}}
\only<3>{\img[0.8]{hit_and_miss_skel}$$S=A\backslash \bigcup_{i}(A\circledast B_i)$$}
\only<4>{\img{skel01}}
\only<5>{\img{skel02}}
\end{frame}
\section{óÅÇÍÅÎÔÁÃÉÑ ÉÚÏÂÒÁÖÅÎÉÊ}
\begin{frame}{óÅÇÍÅÎÔÁÃÉÑ ÉÚÏÂÒÁÖÅÎÉÊ}
\begin{block}{ïÓÎÏ×Ù}
\begin{itemize}
\item óÅÇÍÅÎÔÁÃÉÑ: $\cup_{i=1}^n R_i \,\cup\, \cup_{i=1}^n B_i= R$, ×ÓÅ $R_i$ Ó×ÑÚÎÙÅ, $B_i$~--
ÆÏÎ.
\item $R_i\cap R_j=\varnothing$ $\forall i\ne j$.
\item $Q(R_i) = 1$, $i=\overline{1,n}$, $Q$~-- ÌÏÇÉÞÅÓËÉÊ ÐÒÅÄÉËÁÔ.
\item $Q(R_i\cup R_j)=0$ $\forall i\ne j$.
\end{itemize}
\end{block}
\begin{block}{ðÒÏÉÚ×ÏÄÎÙÅ}
\begin{itemize}
\item $\partder{f}{x}\equiv f'_x=f(x+1)-f(x)$
\item $\dpartder{f}{x}\equiv f''_x = f'_x(x+1)-f'_x(x)=f(x+2)+f(x)-2f(x+1)$
\item $\nabla^2f(x,y) = f''_x(x,y)+f''_y(x,y) \Arr$
$\nabla^2 f(x,y)=f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x,y-1)-4f(x,y)$
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{ðÒÉÍÅÒÙ (M13)}
\only<1>{ïÒÉÇÉÎÁÌ:\\
\smimg[0.5]{origFull}\;\smimg[0.5]{origCrop}
}
\only<2>{âÉÎÁÒÉÚÁÃÉÑ ÐÏ ÐÏÓÔÏÑÎÎÏÍÕ ÐÏÒÏÇÕ:\\
\smimg[0.5]{binFull}\;\smimg[0.5]{binCrop}
}
\only<3>{þÅÔÙÒÅÈËÒÁÔÎÁÑ ÜÒÏÚÉÑ:\\
\smimg[0.5]{erosion4Full}\;\smimg[0.5]{erosion4Crop}
}
\only<4>{þÅÔÙÒÅÈËÒÁÔÎÏÅ ÒÁÚÍÙËÁÎÉÅ:\\
\smimg[0.5]{opening4Full}\;\smimg[0.5]{opening4Crop}
}
\only<5>{ïÒÉÇÉÎÁÌ Ó ÐÒÅÄÙÄÕÝÅÊ ÍÁÓËÏÊ:\\
\smimg[0.5]{objE4D4Full}\;\smimg[0.5]{objE4D4Crop}
}
\only<6>{ä×ÁÄÃÁÔÉÐÑÔÉËÒÁÔÎÁÑ ÜÒÏÚÉÑ:\\
\smimg[0.5]{erosion25Full}\;\smimg[0.5]{erosion25Crop}
}
\only<7>{íÁÓËÁ (25 ÜÒÏÚÉÊ É 200 ÄÉÌÁÔÁÃÉÊ):\\
\smimg[0.5]{opE25D200Full}\;\smimg[0.5]{opE25D200Crop}
}
\only<8>{ïÒÉÇÉÎÁÌ Ó ÐÒÅÄÙÄÕÝÅÊ ÍÁÓËÏÊ:\\
\smimg[0.5]{objE25D200Full}\;\smimg[0.5]{objE25D200Crop}
}
\only<9>{÷ÙÄÅÌÅÎÎÙÅ ÏÂßÅËÔÙ (ÒÁÚÍÙËÁÎÉÅ È4 É È10; 237 É 9 ÏÂßÅËÔÏ× × ÐÏÌÅ ÓÏÏÔ×ÅÔÓÔ×ÅÎÎÏ):\\
\smimg[0.5]{count4}\;\smimg[0.5]{count10}
}
\end{frame}
\begin{frame}{ïÂÎÁÒÕÖÅÎÉÅ ÌÉÎÉÊ, ÔÏÞÅË É ÐÅÒÅÐÁÄÏ×}
\only<1>{\centerline{ôÏÞËÉ --- ÌÁÐÌÁÓÉÁÎ, ÌÉÎÉÉ, ÐÅÒÅÐÁÄÙ --- ÇÒÁÄÉÅÎÔ}\img[0.8]{prewitt}
\centerline{Prewitt}}
\only<2>{\img[0.7]{compmask}}
\only<3>{\begin{block}{çÒÁÄÉÅÎÔ}
$$\nabla \vec f = (f'_x, f'_y) = \bigl(f(x+1,y)-f(x,y), f(x,y+1)-f(x,y)\bigr)$$
\end{block}\img[0.8]{imgrad}}
\end{frame}
\begin{frame}{÷ÙÄÅÌÅÎÉÅ ÇÒÁÎÉÃ}
\only<1>{\begin{block}{íÏÒÆÏÌÏÇÉÞÅÓËÉÊ ÇÒÁÄÉÅÎÔ}
$$\beta(A)=A\backslash(A\ominus B)\qquad
\beta'(A)=(A\oplus B)\backslash A\qquad
\beta''(A)=(A\oplus B)\backslash(A\ominus B)$$
\end{block}\img{morphgrad}}
\only<2>{\begin{block}{Canny}
\begin{enumerate}
\item òÁÚÍÙ×ÁÎÉÅ ÉÚÏÂÒÁÖÅÎÉÑ ÇÁÕÓÓÏ×ÙÍ ÆÉÌØÔÒÏÍ.
\item ÷ÙÞÉÓÌÅÎÉÅ ÞÁÓÔÎÙÈ ÐÒÏÉÚ×ÏÄÎÙÈ $I'_x$ É $I'_y$ (òÏÂÅÒÔÓ, óÏÂÅÌØ, ðÒÀÉÔÔ, LoG, DoG\dots) É
ËÏÍÐÏÎÅÎÔÏ× ÇÒÁÄÉÅÎÔÁ: $M=\sqrt{(I'_x)^2+(I'_y)^2}$, $\theta=\arctg\frc{I'_y}{I'_x}$.
\item ðÏÒÏÇÏ×ÏÅ ÐÒÅÏÂÒÁÚÏ×ÁÎÉÅ $M$: $M_T = M$, ÅÓÌÉ $M>T$, ÉÎÁÞÅ $M_T=0$.
\item ïÂÎÕÌÅÎÉÅ ÎÅÍÁËÓÉÍÁÌØÎÙÈ $M_T$ ÐÏ ÎÁÐÒÁ×ÌÅÎÉÀ $\theta$ (ÐÏ Ä×ÕÍ ÓÏÓÅÄÑÍ).
\item ðÏÌÕÞÅÎÉÅ Ä×ÕÈ ÐÏÒÏÇÏ×ÙÈ ÚÎÁÞÅÎÉÊ: $M_{T_1}$ É $M_{T_2}$; $T_1<T_2$.
\item úÁÐÏÌÎÅÎÉÅ ÐÒÏÐÕÓËÏ× × $M_{T_2}$ ÐÏ ÓÏÓÅÄÎÉÍ ÚÎÁÞÅÎÉÑÍ × $M_{T_1}$.
\end{enumerate}
\end{block}}
\only<3>{\img[0.6]{canny01}\centerline{ïÂÒÁÚÅÃ}}
\only<4>{\img[0.6]{canny02}\centerline{Sobel}}
\only<5>{\img[0.6]{canny03}\centerline{Prewitt}}
\only<6>{\img[0.6]{canny04}\centerline{DoG}}
\only<7>{\img[0.6]{canny05}\centerline{Canny, $\sigma=5$, $T_1=0.8$, $T_2=0.95$}}
\end{frame}
\begin{frame}{ïÂÎÁÒÕÖÅÎÉÅ ÐÒÑÍÙÈ É ÏËÒÕÖÎÏÓÔÅÊ}
\only<1>{\begin{block}{ðÒÅÏÂÒÁÚÏ×ÁÎÉÅ èÁÆÁ}
$$r = x\cos\theta + y\sin\theta$$
\end{block}
\img[0.5]{R_theta_line}}
\only<2>{\img{htdiagram}}
\only<3>{\img[0.7]{htexample}}
\only<4>{\img{htEx}}
\only<5>{\includegraphics[width=0.48\textwidth]{h01}\hfil
\includegraphics[width=0.48\textwidth]{h02}}
\only<6>{\begin{block}{ðÒÅÏÂÒÁÚÏ×ÁÎÉÅ èÁÆÁ ÄÌÑ ÐÏÉÓËÁ ÏËÒÕÖÎÏÓÔÅÊ}
$$(x-x_c)^2+(y-y_c)^2=r^2$$
\end{block}\img{htcirc01}}
\only<7>{\img{htcirc02}\centerline{ôÒÅÈÍÅÒÎÙÊ ÍÁÓÓÉ× × ÓÌÕÞÁÅ ÎÅÉÚ×ÅÓÔÎÙÈ ÃÅÎÔÒÁ É ÒÁÄÉÕÓÁ.}}
\end{frame}
\begin{frame}{ðÒÉÍÅÒ: ÄÁÔÞÉË ×ÏÌÎÏ×ÏÇÏ ÆÒÏÎÔÁ}
\img{Hough_ex}
\end{frame}
\begin{frame}{óÅÇÍÅÎÔÁÃÉÑ ÐÏ ÍÏÒÆÏÌÏÇÉÞÅÓËÉÍ ×ÏÄÏÒÁÚÄÅÌÁÍ}
\only<1>{\begin{block}{}
âÉÎÁÒÎÙÅ ÉÚÏÂÒÁÖÅÎÉÑ: ÉÔÅÒÁÔÉ×ÎÙÅ ÄÉÌÁÔÁÃÉÉ Ó ÐÏÓÔÒÏÅÎÉÅÍ ÐÅÒÅÇÏÒÏÄÏË × ÍÅÓÔÁÈ
ÏÂÒÁÚÏ×Á×ÛÉÈÓÑ ÐÅÒÅÓÅÞÅÎÉÊ.
\end{block}}
\only<2,3>{\begin{block}{}âÉÎÁÒÎÙÅ ÉÚÏÂÒÁÖÅÎÉÑ: ÐÒÅÏÂÒÁÚÏ×ÁÎÉÑ ÒÁÓÓÔÏÑÎÉÊ\end{block}}
\only<1>{\img[0.5]{watershed}}
\only<2>{\img[0.4]{wat01}}
\only<3>{\img[0.75]{wat02}}
\only<4>{\begin{block}{}
÷ ÏÂÝÅÍ ÓÌÕÞÁÅ: ÒÁÚÌÉÞÎÙÅ ÁÌÇÏÒÉÔÍÙ ÚÁÐÏÌÎÅÎÉÑ.
\end{block}
\img[0.7]{watershed01}}
\end{frame}
\section{äÅËÏÎ×ÏÌÀÃÉÑ}
\begin{frame}{äÅËÏÎ×ÏÌÀÃÉÑ}
\only<1>{
\begin{block}{}
$$I(x,y) = P(x,y)*O(x,y)+N(x,y),\quad\text{$P$~-- PSF}\quad\text{ÉÌÉ}$$
$$\FT{I}=\FT{O}\cdot\FT{P}+\FT{N}\quad\Arr\quad
\FT{O}=\frac{\FT{I} - \FT{N}}{\FT{P}}$$
$$\text{îÁÉÍÅÎØÛÉÅ Ë×ÁÄÒÁÔÙ:}\quad
\FT{O}=\frac{\FT{P}^*\FT{I}}{|\FT{P}|^2}$$
$$\text{òÅÇÕÌÑÒÉÚÁÃÉÑ ôÉÈÏÎÏ×Á, $\min(J_T)$ ($H$~-- HPF):}\quad
\quad J_T=||I-P*O|| - \lambda||H*O||,$$
$$\FT{O}=\frac{\FT{P}^*\FT{I}}{|\FT{P}|^2+\lambda|\FT{H}|^2}$$
\end{block}
}\only<2>{
\begin{block}{òÅÇÕÌÑÒÉÚÁÃÉÑ ÐÏ âÁÊÅÓÕ}
$$p(O|I)=\frac{p(I|O)\cdot p(O)}{p(I)}$$
$$\text{Maximum likelihood:}\quad \mathrm{ML}(O)=\max_O p(I|O)$$
$$\text{Maximum-a-posteriori solution:}\quad
\mathrm{MAP}(O)=\max_O p(I|O)\cdot p(O)$$
\end{block}
\begin{block}{}
\begin{itemize}
\item éÔÅÒÁÃÉÏÎÎÁÑ ÒÅÇÕÌÑÒÉÚÁÃÉÑ
\item ÷ÅÊ×ÌÅÔ-ÒÅÇÕÌÑÒÉÚÁÃÉÑ
\item \dots
\end{itemize}
\end{block}
}
\end{frame}
\begin{frame}{æÕÎËÃÉÑ ÒÁÓÓÅÑÎÉÑ ÔÏÞËÉ}
\only<1>{\img[0.6]{moffat}}
\only<2>{\begin{block}{}
\begin{itemize}
\item çÁÕÓÓ: $f(x) = f_0\exp\Bigl(\dfrac{-(x-x_0)^2}{2\sigma^2}\Bigr)$,
$\FWHM\approx2.355\sigma$
\item íÏÆÆÁÔ: $f(x) = f_0\Bigl(1+\dfrac{(x-x_0)^2}{\alpha^2}\Bigr)^{-\beta}$,
$\FWHM\approx2\alpha\sqrt{2^{1/\beta}-1}$
\item æÒÉÄ: $\FT{f} \propto \exp\Bigl[-(bu)^{5/3}\Bigr]$,
$\FWHM\approx 2.921 b$ (íÏÆÆÁÔ Ó $\beta=4.765$, ÔÉÐÉÞÎÙÅ ÖÅ $\beta=2.5\cdots4.5$).
\end{itemize}
\end{block}
}
\end{frame}
\section{ïÂÎÁÒÕÖÅÎÉÅ}
\begin{frame}{ïÂÎÁÒÕÖÅÎÉÅ}
\begin{block}{ðÒÏÓÔÅÊÛÉÊ ÁÌÇÏÒÉÔÍ}
\begin{enumerate}
\item ÷ÙÞÉÓÌÅÎÉÅ É ×ÙÞÉÔÁÎÉÅ ÆÏÎÁ
\item ó×ÅÒÔËÁ Ó ÍÁÓËÏÊ É ÂÉÎÁÒÉÚÁÃÉÑ
\item ïÂÎÁÒÕÖÅÎÉÅ Ó×ÑÚÎÙÈ ÏÂÌÁÓÔÅÊ
\item õÔÏÞÎÅÎÉÅ ÆÏÎÁ, goto 1
\item ëÌÁÓÓÉÆÉËÁÃÉÑ, ÆÏÔÏÍÅÔÒÉÑ É Ô.Ð.
\end{enumerate}
\end{block}
\end{frame}
\begin{blueframe}{}
\img{objdet}
\end{blueframe}
\begin{blueframe}{éÚÏÆÏÔÙ}
\only<1>{\begin{block}{íÅÔÏÄ ÛÁÇÁÀÝÉÈ Ë×ÁÄÒÁÔÏ×}
âÉÎÁÒÉÚÕÅÍ ÉÚÏÂÒÁÖÅÎÉÅ ÐÏ ÚÁÄÁÎÎÏÍÕ ÐÏÒÏÇÕ. ðÏ ÓÏÓÅÄÑÍ ËÁÖÄÏÇÏ ÐÉËÓÅÌÑ ×ÙÞÉÓÌÑÅÍ
ÂÉÔÏ×ÕÀ ÍÁÓËÕ
($0\div15$). ïÔ ÔÏÞËÉ $1\div14$ ÓÔÒÏÉÍ ÉÚÏÌÉÎÉÀ, ÓÏÏÔ×ÅÔÓÔ×ÅÎÎÏ ÍÅÎÑÑ ÚÎÁÞÅÎÉÑ ×
ÐÉËÓÅÌÑÈ ÍÁÓËÉ. ëÁÖÄÙÊ ÕÚÅÌ
ÉÚÏÌÉÎÉÉ~--- ÌÉÎÅÊÎÁÑ ÉÌÉ ÄÒÕÇÁÑ ÉÎÔÅÒÐÏÌÑÃÉÑ ÉÎÔÅÎÓÉ×ÎÏÓÔÉ × ÐÉËÓÅÌÑÈ ÏÒÉÇÉÎÁÌÁ.
\end{block}
\img[0.5]{isophotes}
}
\only<2>{\img{Marching_squares_algorithm}}
\end{blueframe}
\begin{frame}{WCS-ÐÒÉ×ÑÚËÁ}
\only<1>{
\img[0.6]{WCS_triangles}
\centerline{A.~P\'al, G.\'A.~Bakos. PASP {\bf 118}: 1474--1483, 2006. }}
\only<2>{
\img[0.65]{WCS_quad}
\centerline{\url{astrometry.net}}}
\only<3>{\begin{block}{}
\begin{itemize}
\item ðÏÌÏÖÅÎÉÅ ÎÅÓËÏÌØËÉÈ Ú×ÅÚÄ ÈÁÒÁËÔÅÒÉÚÕÅÔÓÑ ÐÁÒÁÍÅÔÒÏÍ, ÉÎ×ÁÒÉÁÎÔÎÙÍ Ë
ÚÅÒËÁÌÉÒÏ×ÁÎÉÀ, ÍÁÓÛÔÁÂÉÒÏ×ÁÎÉÀ,
×ÒÁÝÅÎÉÀ É ÐÅÒÅÎÏÓÕ. õÓÔÏÊÞÉ×ÙÍ Ë ÛÕÍÕ.
\item ë×ÁÄÒÁÔÕ ABCD ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÞÅÔÙÒÅÈÍÅÒÎÙÊ ËÏÄ × ÏÔÎÏÓÉÔÅÌØÎÙÈ ËÏÏÒÄÉÎÁÔÁÈ
ÔÏÞÅË C É D.
\item ðÒÏÂÌÅÍÁ ×ÙÒÏÖÄÅÎÉÑ: ÐÒÉ ÓÍÅÎÅ ÐÏÒÑÄËÁ A, B ÉÌÉ C, D ËÏÄ <<ÏÔÒÁÖÁÅÔÓÑ>>.
\item îÁ ÎÅÂÅ ÓÔÒÏÉÔÓÑ ÓÅÔËÁ Ó ÍÁÓÛÔÁÂÉÒÕÅÍÙÍ ÛÁÇÏÍ, ÐÏ ËÁÔÁÌÏÖÎÙÍ ÄÁÎÎÙÍ × ÅÅ
ÑÞÅÊËÁÈ ÏÐÒÅÄÅÌÑÀÔÓÑ Ë×ÁÄÒÁÔÙ
Ó ÎÉÓÐÁÄÁÀÝÅÊ ÑÒËÏÓÔØÀ Ú×ÅÚÄ.
\item ðÏÌÕÞÅÎÎÙÊ ÎÁÂÏÒ ËÏÄÏ× ÐÏÚ×ÏÌÑÅÔ ÉÄÅÎÔÉÆÉÃÉÒÏ×ÁÔØ ÕÞÁÓÔËÉ ÎÅÂÁ ×ÐÌÏÔØ ÄÏ
ÓÁÍÙÈ ÍÅÌËÉÈ ÍÁÓÛÔÁÂÏ× (ÎÕÖÎÙ
ÈÏÔÑ ÂÙ ÞÅÔÙÒÅ Ú×ÅÚÄÙ × ËÁÄÒÅ).
\item þÅÍ ÂÏÌØÛÅ Ú×ÅÚÄ ÎÁ ËÁÄÒÅ, ÔÅÍ ÎÁÄÅÖÎÅÊ ÂÕÄÅÔ ÉÄÅÎÔÉÆÉËÁÃÉÑ.
\end{itemize}
\end{block}
}
\end{frame}
\begin{blueframe}{ôÒÉÁÎÇÕÌÑÃÉÑ äÅÌÏÎÅ}
\img[0.6]{delaunay}
\end{blueframe}
\begin{blueframe}{äÉÁÇÒÁÍÍÙ ÷ÏÒÏÎÏÇÏ}
\only<1>{\img[0.6]{voronoi}}
\only<2>{\img[0.6]{delvor}}
\end{blueframe}
\begin{frame}{ó×ÏÊÓÔ×Á ÔÒÉÁÎÇÕÌÑÃÉÉ äÅÌÏÎÅ}
\begin{block}{}
\begin{itemize}
\item ôä ×ÚÁÉÍÎÏ ÏÄÎÏÚÎÁÞÎÏ ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÄÉÁÇÒÁÍÍÅ ÷ÏÒÏÎÏÇÏ ÄÌÑ ÔÏÇÏ ÖÅ ÍÎÏÖÅÓÔ×Á
ÔÏÞÅË.
ëÁË ÓÌÅÄÓÔ×ÉÅ: ÅÓÌÉ ÎÉËÁËÉÅ ÞÅÔÙÒÅ ÔÏÞËÉ ÎÅ ÌÅÖÁÔ ÎÁ ÏÄÎÏÊ ÏËÒÕÖÎÏÓÔÉ, ôä ÅÄÉÎÓÔ×ÅÎÎÁ.
\item ôä ÍÁËÓÉÍÉÚÉÒÕÅÔ ÍÉÎÉÍÁÌØÎÙÊ ÕÇÏÌ ÓÒÅÄÉ ×ÓÅÈ ÕÇÌÏ× ×ÓÅÈ ÐÏÓÔÒÏÅÎÎÙÈ
ÔÒÅÕÇÏÌØÎÉËÏ×, ÔÅÍ
ÓÁÍÙÍ ÉÚÂÅÇÁÀÔÓÑ <<ÔÏÎËÉÅ>> ÔÒÅÕÇÏÌØÎÉËÉ.
\item ôä ÍÁËÓÉÍÉÚÉÒÕÅÔ ÓÕÍÍÕ ÒÁÄÉÕÓÏ× ×ÐÉÓÁÎÎÙÈ ÏËÒÕÖÎÏÓÔÅÊ.
\item ôä ÍÉÎÉÍÉÚÉÒÕÅÔ ÍÁËÓÉÍÁÌØÎÙÊ ÒÁÄÉÕÓ ÍÉÎÉÍÁÌØÎÏÇÏ ÏÂßÅÍÌÀÝÅÇÏ ÛÁÒÁ.
\item ôä ÎÁ ÐÌÏÓËÏÓÔÉ ÏÂÌÁÄÁÅÔ ÍÉÎÉÍÁÌØÎÏÊ ÓÕÍÍÏÊ ÒÁÄÉÕÓÏ× ÏËÒÕÖÎÏÓÔÅÊ, ÏÐÉÓÁÎÎÙÈ ÏËÏÌÏ
ÔÒÅÕÇÏÌØÎÉËÏ×, ÓÒÅÄÉ ×ÓÅÈ ×ÏÚÍÏÖÎÙÈ ÔÒÉÁÎÇÕÌÑÃÉÊ.
\end{itemize}
\end{block}
\end{frame}
\begin{blueframe}{K-nearest}
\begin{columns}
\column{0.5\textwidth}
\begin{block}{}
ëÌÁÓÓÉÆÉËÁÃÉÑ ÏÂßÅËÔÁ ÐÏ $k$~ÂÌÉÖÁÊÛÉÍ ÓÏÓÅÄÑÍ. ÷ ÓÌÕÞÁÅ ÐÅÒ×ÏÊ ×ÙÂÏÒËÉ~---
ÔÒÅÕÇÏÌØÎÉË, × ÓÌÕÞÁÅ ×ÔÏÒÏÊ~---
Ë×ÁÄÒÁÔ.
$k$ ÍÏÖÅÔ ÂÙÔØ ÄÒÏÂÎÙÍ, ÅÓÌÉ ÐÒÉÍÅÎÑÔØ ×Ú×ÅÛÅÎÎÙÅ ÒÁÓÓÔÏÑÎÉÑ.
\end{block}
\column{0.5\textwidth}
\img{knearest}
\end{columns}
\end{blueframe}
\begin{frame}{ðÒÏÇÒÁÍÍÎÏÅ ÏÂÅÓÐÅÞÅÎÉÅ}
\begin{block}{\url{http://heasarc.gsfc.nasa.gov/docs/heasarc/astro-update/}}
\begin{itemize}
\item ASTROPY: A single core package for Astronomy in Python
\item Aladin: An interactive software sky atlas
\item CFITSIO: FITS file access subroutine library
\item GSL: GNU Scientific Library
\item IDLAUL: IDL Astronomical Users Library
\item IRAF: Image Reduction and Analysis Facility
\item MIDAS: Munich Image Data Analysis System
\item PyRAF: Run IRAF tasks in Python
\item SAOImage ds9: FITS image viewer and analyzer
\item SEXTRACTOR: Builds catalogue of objects from an astronomical image
\item WCSLIB: World Coordinate System software library
\item \dots~\url{http://tdc-www.harvard.edu/astro.software.html}
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{ìÉÔÅÒÁÔÕÒÁ}
\begin{itemize}
\item W. Romanishin. An Introduction to Astronomical Photometry Using CCDs.
\item Jean-Luc Starck and Fionn Murtagh. Handbook of Astronomical Data Analysis.
\item Gonzalez \& Woods. Digital Image Processing, 4th edition. 2018. ISBN 10: 1-292-22304-9
\item Gonzalez \& Woods \& Eddins. Digital Image Processing Using MATLAB, 2nd edition. 2009.
\item \url{http://www.imageprocessingplace.com/root_files_V3/tutorials.htm}
\end{itemize}
\end{frame}
\begin{frame}{óÐÁÓÉÂÏ ÚÁ ×ÎÉÍÁÎÉÅ!}
\centering
\begin{minipage}{5cm}
\begin{block}{mailto}
eddy@sao.ru\\
edward.emelianoff@gmail.com
\end{block}\end{minipage}
\end{frame}
\end{document}

View File

@ -0,0 +1,4 @@
function F = F(x)
F(1) = exp(-exp(-(x(1)+x(2)))) - x(2)*(1+x(1).^2);
F(2) = x(1).*cos(x(2)) + x(2).*sin(x(1)) - 0.5;
endfunction

View File

@ -0,0 +1,3 @@
function y = i1 (x)
y = x .* sin (1./x) .* sqrt (abs (1 - x));
endfunction

View File

@ -0,0 +1,3 @@
function xdot = ode1(x, t)
xdot = -exp(-t)*x^2;
endfunction

View File

@ -0,0 +1,4 @@
% Initialisation of Van der Pol with mu=1
function dydt = vdp1(t,y)
dydt = [y(2); (1-y(1)^2)*y(2)-y(1)];
endfunction

View File

@ -0,0 +1,5 @@
function A = test(x)
A(1) = 2*(x(1) - 4).^2 + 7*(x(2)-8).^2 - x(3).^2;
A(2) = 5*(x(1) - 1).^2 - 4*(x(2)+3).^2 + 2* x(3).^2 + 1;
A(3) = x(1).^2 + x(2)^2 + x(3)^2;
endfunction

View File

@ -0,0 +1 @@
9.54, 3.44, -7.91

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 69 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 68 KiB