mirror of
https://github.com/eddyem/eddys_snippets.git
synced 2025-12-06 02:35:12 +03:00
617 lines
19 KiB
C
617 lines
19 KiB
C
/*
|
|
* zernikeR.c - Zernike decomposition for scattered points & annular aperture
|
|
*
|
|
* Copyright 2013 Edward V. Emelianoff <eddy@sao.ru>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
* MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <gsl/gsl_linalg.h>
|
|
#include <gsl/gsl_matrix.h>
|
|
#include <gsl/gsl_blas.h>
|
|
|
|
#include "zernike.h"
|
|
#include "zern_private.h"
|
|
|
|
/**
|
|
* Build array with R powers (from 0 to n inclusive)
|
|
* @param n - power of Zernike polinomial (array size = n+1)
|
|
* @param Sz - size of P array
|
|
* @param P (i) - polar coordinates of points
|
|
*/
|
|
double **build_rpowR(int n, int Sz, polar *P){
|
|
int i, j, N = n + 1;
|
|
double **Rpow = MALLOC(double*, N);
|
|
Rpow[0] = MALLOC(double, Sz);
|
|
for(i = 0; i < Sz; i++) Rpow[0][i] = 1.; // zero's power
|
|
for(i = 1; i < N; i++){ // Rpow - is quater I of cartesian coordinates ('cause other are fully simmetrical)
|
|
Rpow[i] = MALLOC(double, Sz);
|
|
double *rp = Rpow[i], *rpo = Rpow[i-1];
|
|
polar *p = P;
|
|
for(j = 0; j < Sz; j++, rp++, rpo++, p++){
|
|
*rp = (*rpo) * p->r;
|
|
}
|
|
}
|
|
return Rpow;
|
|
}
|
|
|
|
bool check_parameters(n, m, Sz, P){
|
|
bool erparm = false;
|
|
if(Sz < 3 || !P)
|
|
errx(1, "Size of matrix must be > 2!");
|
|
if(n > 100)
|
|
errx(1, "Order of Zernike polynomial must be <= 100!");
|
|
if(n < 0) erparm = true;
|
|
if(n < iabs(m)) erparm = true; // |m| must be <= n
|
|
if((n - m) % 2) erparm = true; // n-m must differ by a prod of 2
|
|
if(erparm)
|
|
errx(1, "Wrong parameters of Zernike polynomial (%d, %d)", n, m);
|
|
else
|
|
if(!FK) build_factorial();
|
|
return erparm;
|
|
}
|
|
|
|
/**
|
|
* Zernike function for scattering data
|
|
* @param n,m - orders of polynomial
|
|
* @param Sz - number of points
|
|
* @param P(i) - array with points coordinates (polar, r<=1)
|
|
* @param norm(o) - (optional) norm coefficient
|
|
* @return dynamically allocated array with Z(n,m) for given array P
|
|
*/
|
|
double *zernfunR(int n, int m, int Sz, polar *P, double *norm){
|
|
if(check_parameters(n, m, Sz, P)) return NULL;
|
|
int j, k, m_abs = iabs(m), iup = (n-m_abs)/2;
|
|
double **Rpow = build_rpowR(n, Sz, P);
|
|
double ZSum = 0.;
|
|
// now fill output matrix
|
|
double *Zarr = MALLOC(double, Sz); // output matrix
|
|
double *Zptr = Zarr;
|
|
polar *p = P;
|
|
for(j = 0; j < Sz; j++, p++, Zptr++){
|
|
double Z = 0.;
|
|
if(p->r > 1.) continue; // throw out points with R>1
|
|
// calculate R_n^m
|
|
for(k = 0; k <= iup; k++){ // Sum
|
|
double z = (1. - 2. * (k % 2)) * FK[n - k] // (-1)^k * (n-k)!
|
|
/(//----------------------------------- ----- -------------------------------
|
|
FK[k]*FK[(n+m_abs)/2-k]*FK[(n-m_abs)/2-k] // k!((n+|m|)/2-k)!((n-|m|)/2-k)!
|
|
);
|
|
Z += z * Rpow[n-2*k][j]; // *R^{n-2k}
|
|
}
|
|
// normalize
|
|
double eps_m = (m) ? 1. : 2.;
|
|
Z *= sqrt(2.*(n+1.) / M_PI / eps_m );
|
|
double m_theta = (double)m_abs * p->theta;
|
|
// multiply to angular function:
|
|
if(m){
|
|
if(m > 0)
|
|
Z *= cos(m_theta);
|
|
else
|
|
Z *= sin(m_theta);
|
|
}
|
|
*Zptr = Z;
|
|
ZSum += Z*Z;
|
|
}
|
|
if(norm) *norm = ZSum;
|
|
// free unneeded memory
|
|
free_rpow(&Rpow, n);
|
|
return Zarr;
|
|
}
|
|
|
|
/**
|
|
* Zernike polynomials in Noll notation for square matrix
|
|
* @param p - index of polynomial
|
|
* @other params are like in zernfunR
|
|
* @return zernfunR
|
|
*/
|
|
double *zernfunNR(int p, int Sz, polar *P, double *norm){
|
|
int n, m;
|
|
convert_Zidx(p, &n, &m);
|
|
return zernfunR(n,m,Sz,P,norm);
|
|
}
|
|
|
|
/**
|
|
* Zernike decomposition of image 'image' WxH pixels
|
|
* @param Nmax (i) - maximum power of Zernike polinomial for decomposition
|
|
* @param Sz, P(i) - size (Sz) of points array (P)
|
|
* @param heights(i) - wavefront walues in points P
|
|
* @param Zsz (o) - size of Z coefficients array
|
|
* @param lastIdx(o) - (if !NULL) last non-zero coefficient
|
|
* @return array of Zernike coefficients
|
|
*/
|
|
double *ZdecomposeR(int Nmax, int Sz, polar *P, double *heights, int *Zsz, int *lastIdx){
|
|
int i, pmax, maxIdx = 0;
|
|
double *Zidxs = NULL, *icopy = NULL;
|
|
pmax = (Nmax + 1) * (Nmax + 2) / 2; // max Z number in Noll notation
|
|
Zidxs = MALLOC(double, pmax);
|
|
icopy = MALLOC(double, Sz);
|
|
memcpy(icopy, heights, Sz*sizeof(double)); // make image copy to leave it unchanged
|
|
*Zsz = pmax;
|
|
for(i = 0; i < pmax; i++){ // now we fill array
|
|
double norm, *Zcoeff = zernfunNR(i, Sz, P, &norm);
|
|
int j;
|
|
double *iptr = icopy, *zptr = Zcoeff, K = 0.;
|
|
for(j = 0; j < Sz; j++, iptr++, zptr++)
|
|
K += (*zptr) * (*iptr) / norm; // multiply matrixes to get coefficient
|
|
if(fabs(K) < Z_prec)
|
|
continue; // there's no need to substract values that are less than our precision
|
|
Zidxs[i] = K;
|
|
maxIdx = i;
|
|
|
|
iptr = icopy; zptr = Zcoeff;
|
|
for(j = 0; j < Sz; j++, iptr++, zptr++)
|
|
*iptr -= K * (*zptr); // subtract composed coefficient to reduce high orders values
|
|
|
|
FREE(Zcoeff);
|
|
}
|
|
if(lastIdx) *lastIdx = maxIdx;
|
|
FREE(icopy);
|
|
return Zidxs;
|
|
}
|
|
|
|
/**
|
|
* Restoration of image in points P by Zernike polynomials coefficients
|
|
* @param Zsz (i) - number of actual elements in coefficients array
|
|
* @param Zidxs(i) - array with Zernike coefficients
|
|
* @param Sz, P(i) - number (Sz) of points (P)
|
|
* @return restored image
|
|
*/
|
|
double *ZcomposeR(int Zsz, double *Zidxs, int Sz, polar *P){
|
|
int i;
|
|
double *image = MALLOC(double, Sz);
|
|
for(i = 0; i < Zsz; i++){ // now we fill array
|
|
double K = Zidxs[i];
|
|
if(fabs(K) < Z_prec) continue;
|
|
double *Zcoeff = zernfunNR(i, Sz, P, NULL);
|
|
int j;
|
|
double *iptr = image, *zptr = Zcoeff;
|
|
for(j = 0; j < Sz; j++, iptr++, zptr++)
|
|
*iptr += K * (*zptr); // add next Zernike polynomial
|
|
FREE(Zcoeff);
|
|
}
|
|
return image;
|
|
}
|
|
|
|
/**
|
|
* Prints out GSL matrix
|
|
* @param M (i) - matrix to print
|
|
*/
|
|
void print_matrix(gsl_matrix *M){
|
|
int x,y, H = M->size1, W = M->size2;
|
|
size_t T = M->tda;
|
|
printf("\nMatrix %dx%d:\n", W, H);
|
|
for(y = 0; y < H; y++){
|
|
double *ptr = &(M->data[y*T]);
|
|
printf("str %6d", y);
|
|
for(x = 0; x < W; x++, ptr++)
|
|
printf("%6.1f ", *ptr);
|
|
printf("\n");
|
|
}
|
|
printf("\n\n");
|
|
}
|
|
|
|
/*
|
|
To try less-squares fit I decide after reading of
|
|
@ARTICLE{2010ApOpt..49.6489M,
|
|
author = {{Mahajan}, V.~N. and {Aftab}, M.},
|
|
title = "{Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts}",
|
|
journal = {\ao},
|
|
year = 2010,
|
|
month = nov,
|
|
volume = 49,
|
|
pages = {6489},
|
|
doi = {10.1364/AO.49.006489},
|
|
adsurl = {http://adsabs.harvard.edu/abs/2010ApOpt..49.6489M},
|
|
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
|
|
}
|
|
*/
|
|
/*
|
|
* n'th column of array m is polynomial of n'th degree,
|
|
* m'th row is m'th data point
|
|
*
|
|
* We fill matrix with polynomials by known datapoints coordinates,
|
|
* after that by less-square fit we get coefficients of decomposition
|
|
*/
|
|
double *LS_decompose(int Nmax, int Sz, polar *P, double *heights, int *Zsz, int *lastIdx){
|
|
int pmax = (Nmax + 1) * (Nmax + 2) / 2; // max Z number in Noll notation
|
|
/*
|
|
(from GSL)
|
|
typedef struct {
|
|
size_t size1; // rows (height)
|
|
size_t size2; // columns (width)
|
|
size_t tda; // data width (aligned) - data stride
|
|
double * data; // pointer to block->data (matrix data itself)
|
|
gsl_block * block; // block with matrix data (block->size is size)
|
|
int owner; // ==1 if matrix owns 'block' (then block will be freed with matrix)
|
|
} gsl_matrix;
|
|
*/
|
|
// Now allocate matrix: its Nth row is equation for Nth data point,
|
|
// Mth column is Z_M
|
|
gsl_matrix *M = gsl_matrix_calloc(Sz, pmax);
|
|
// fill matrix with coefficients
|
|
int x,y;
|
|
size_t T = M->tda;
|
|
for(x = 0; x < pmax; x++){
|
|
double norm, *Zcoeff = zernfunNR(x, Sz, P, &norm), *Zptr = Zcoeff;
|
|
double *ptr = &(M->data[x]);
|
|
for(y = 0; y < Sz; y++, ptr+=T, Zptr++) // fill xth polynomial
|
|
*ptr = (*Zptr);
|
|
FREE(Zcoeff);
|
|
}
|
|
|
|
gsl_vector *ans = gsl_vector_calloc(pmax);
|
|
|
|
gsl_vector_view b = gsl_vector_view_array(heights, Sz);
|
|
gsl_vector *tau = gsl_vector_calloc(pmax); // min(size(M))
|
|
gsl_linalg_QR_decomp(M, tau);
|
|
|
|
gsl_vector *residual = gsl_vector_calloc(Sz);
|
|
gsl_linalg_QR_lssolve(M, tau, &b.vector, ans, residual);
|
|
double *ptr = ans->data;
|
|
int maxIdx = 0;
|
|
double *Zidxs = MALLOC(double, pmax);
|
|
for(x = 0; x < pmax; x++, ptr++){
|
|
if(fabs(*ptr) < Z_prec) continue;
|
|
Zidxs[x] = *ptr;
|
|
maxIdx = x;
|
|
}
|
|
|
|
gsl_matrix_free(M);
|
|
gsl_vector_free(ans);
|
|
gsl_vector_free(tau);
|
|
gsl_vector_free(residual);
|
|
|
|
if(lastIdx) *lastIdx = maxIdx;
|
|
return Zidxs;
|
|
}
|
|
|
|
/*
|
|
* Pseudo-annular Zernike polynomials
|
|
* They are just a linear composition of Zernike, made by Gram-Schmidt ortogonalisation
|
|
* Real Zernike koefficients restored by reverce transformation matrix
|
|
*
|
|
* Suppose we have a wavefront data in set of scattered points ${(x,y)}$, we want to
|
|
* find Zernike coefficients $z$ such that product of Zernike polynomials, $Z$, and
|
|
* $z$ give us that wavefront data with very little error (depending on $Z$ degree).
|
|
*
|
|
* Of cource, $Z$ isn't orthonormal on our basis, so we need to create some intermediate
|
|
* polynomials, $U$, which will be linear dependent from $Z$ (and this dependency
|
|
* should be strict and reversable, otherwise we wouldn't be able to reconstruct $z$
|
|
* from $u$): $U = Zk$. So, we have: $W = Uu + \epsilon$ and $W = Zz + \epsilon$.
|
|
*
|
|
* $U$ is orthonormal, so $U^T = U^{-1}$ and (unlike to $Z$) this reverce matrix
|
|
* exists and is unique. This mean that $u = W^T U = U^T W$.
|
|
* Coefficients matrix, $k$ must be inversable, so $Uk^{-1} = Z$, this mean that
|
|
* $z = uk^{-1}$.
|
|
*
|
|
* Our main goal is to find that matrix $k$.
|
|
*
|
|
* 1. QR-decomposition
|
|
* In this case non-orthogonal matrix $Z$ decomposed to orthogonal matrix $Q$ and
|
|
* right-triangular matrix $R$. In our case $Q$ is $U$ itself and $R$ is $k^{-1}$.
|
|
* QR-decomposition gives us an easy way to compute coefficient's matrix, $k$.
|
|
* Polynomials in $Q$ are linear-dependent from $Z$, each $n^{th}$ polynomial in $Q$
|
|
* depends from first $n$ polynomials in $Z$. So, columns of $R$ are coefficients
|
|
* for making $U$ from $Z$; rows in $R$ are coefficients for making $z$ from $u$.
|
|
*
|
|
* 2. Cholesky decomposition
|
|
* In this case for any non-orthogonal matrix with real values we have:
|
|
* $A^{T}A = LL^{T}$, where $L$ is left-triangular matrix.
|
|
* Orthogonal basis made by equation $U = A(L^{-1})^T$. And, as $A = UL^T$, we
|
|
* can reconstruct coefficients matrix: $k = (L^{-1})^T$.
|
|
*/
|
|
|
|
double *QR_decompose(int Nmax, int Sz, polar *P, double *heights, int *Zsz, int *lastIdx){
|
|
int pmax = (Nmax + 1) * (Nmax + 2) / 2; // max Z number in Noll notation
|
|
if(Sz < pmax) errx(1, "Number of points must be >= number of polynomials!");
|
|
int k, x,y;
|
|
|
|
//make new polar
|
|
polar *Pn = conv_r(P, Sz);
|
|
// Now allocate matrix: its Nth row is equation for Nth data point,
|
|
// Mth column is Z_M
|
|
gsl_matrix *M = gsl_matrix_calloc(Sz, pmax);
|
|
// Q-matrix (its first pmax columns is our basis)
|
|
gsl_matrix *Q = gsl_matrix_calloc(Sz, Sz);
|
|
// R-matrix (coefficients)
|
|
gsl_matrix *R = gsl_matrix_calloc(Sz, pmax);
|
|
// fill matrix with coefficients
|
|
size_t T = M->tda;
|
|
for(x = 0; x < pmax; x++){
|
|
double norm, *Zcoeff = zernfunNR(x, Sz, Pn, &norm), *Zptr = Zcoeff;
|
|
double *ptr = &(M->data[x]);
|
|
for(y = 0; y < Sz; y++, ptr+=T, Zptr++) // fill xth polynomial
|
|
*ptr = (*Zptr) / norm;
|
|
FREE(Zcoeff);
|
|
}
|
|
|
|
gsl_vector *tau = gsl_vector_calloc(pmax); // min(size(M))
|
|
gsl_linalg_QR_decomp(M, tau);
|
|
|
|
gsl_linalg_QR_unpack(M, tau, Q, R);
|
|
//print_matrix(R);
|
|
gsl_matrix_free(M);
|
|
gsl_vector_free(tau);
|
|
|
|
double *Zidxs = MALLOC(double, pmax);
|
|
T = Q->tda;
|
|
size_t Tr = R->tda;
|
|
|
|
for(k = 0; k < pmax; k++){ // cycle by powers
|
|
double sumD = 0.;
|
|
double *Qptr = &(Q->data[k]);
|
|
for(y = 0; y < Sz; y++, Qptr+=T){ // cycle by points
|
|
sumD += heights[y] * (*Qptr);
|
|
}
|
|
Zidxs[k] = sumD;
|
|
}
|
|
gsl_matrix_free(Q);
|
|
|
|
// now restore Zernike coefficients
|
|
double *Zidxs_corr = MALLOC(double, pmax);
|
|
int maxIdx = 0;
|
|
for(k = 0; k < pmax; k++){
|
|
double sum = 0.;
|
|
double *Rptr = &(R->data[k*(Tr+1)]), *Zptr = &(Zidxs[k]);
|
|
for(x = k; x < pmax; x++, Zptr++, Rptr++){
|
|
sum += (*Zptr) * (*Rptr);
|
|
}
|
|
if(fabs(sum) < Z_prec) continue;
|
|
Zidxs_corr[k] = sum;
|
|
maxIdx = k;
|
|
}
|
|
gsl_matrix_free(R);
|
|
FREE(Zidxs);
|
|
FREE(Pn);
|
|
if(lastIdx) *lastIdx = maxIdx;
|
|
return Zidxs_corr;
|
|
}
|
|
|
|
|
|
/**
|
|
* Components of Zj gradient without constant factor
|
|
* @param n,m - orders of polynomial
|
|
* @param Sz - number of points
|
|
* @param P (i) - coordinates of reference points
|
|
* @param norm (o) - norm factor or NULL
|
|
* @return array of gradient's components
|
|
*/
|
|
point *gradZR(int n, int m, int Sz, polar *P, double *norm){
|
|
if(check_parameters(n, m, Sz, P)) return NULL;
|
|
point *gZ = NULL;
|
|
int j, k, m_abs = iabs(m), iup = (n-m_abs)/2, isum = (n+m_abs)/2;
|
|
double **Rpow = build_rpowR(n, Sz, P);
|
|
// now fill output matrix
|
|
gZ = MALLOC(point, Sz);
|
|
point *Zptr = gZ;
|
|
double ZSum = 0.;
|
|
polar *p = P;
|
|
for(j = 0; j < Sz; j++, p++, Zptr++){
|
|
if(p->r > 1.) continue; // throw out points with R>1
|
|
double theta = p->theta;
|
|
// components of grad Zj:
|
|
|
|
// 1. Theta_j; 2. dTheta_j/Dtheta
|
|
double Tj = 1., dTj = 0.;
|
|
if(m){
|
|
double costm, sintm;
|
|
sincos(theta*(double)m_abs, &sintm, &costm);
|
|
if(m > 0){
|
|
Tj = costm;
|
|
dTj = -m_abs * sintm;
|
|
}else{
|
|
Tj = sintm;
|
|
dTj = m_abs * costm;
|
|
}
|
|
}
|
|
|
|
// 3. R_j & dR_j/dr
|
|
double Rj = 0., dRj = 0.;
|
|
for(k = 0; k <= iup; k++){
|
|
double rj = (1. - 2. * (k % 2)) * FK[n - k] // (-1)^k * (n-k)!
|
|
/(//----------------------------------- ----- -------------------------------
|
|
FK[k]*FK[isum-k]*FK[iup-k] // k!((n+|m|)/2-k)!((n-|m|)/2-k)!
|
|
);
|
|
//DBG("rj = %g (n=%d, k=%d)\n",rj, n, k);
|
|
int kidx = n - 2*k;
|
|
Rj += rj * Rpow[kidx][j]; // *R^{n-2k}
|
|
if(kidx > 0)
|
|
dRj += rj * kidx * Rpow[kidx - 1][j]; // *(n-2k)*R^{n-2k-1}
|
|
}
|
|
// normalisation for Zernike
|
|
double eps_m = (m) ? 1. : 2., sq = sqrt(2.*(double)(n+1) / M_PI / eps_m);
|
|
Rj *= sq, dRj *= sq;
|
|
// 4. sin/cos
|
|
double sint, cost;
|
|
sincos(theta, &sint, &cost);
|
|
|
|
// projections of gradZj
|
|
double TdR = Tj * dRj, RdT = Rj * dTj / p->r;
|
|
Zptr->x = TdR * cost - RdT * sint;
|
|
Zptr->y = TdR * sint + RdT * cost;
|
|
// norm factor
|
|
ZSum += Zptr->x * Zptr->x + Zptr->y * Zptr->y;
|
|
}
|
|
if(norm) *norm = ZSum;
|
|
// free unneeded memory
|
|
free_rpow(&Rpow, n);
|
|
return gZ;
|
|
}
|
|
|
|
/**
|
|
* Build components of vector polynomial Sj
|
|
* @param p - index of polynomial
|
|
* @param Sz - number of points
|
|
* @param P (i) - coordinates of reference points
|
|
* @param norm (o) - norm factor or NULL
|
|
* @return Sj(n,m) on image points
|
|
*/
|
|
point *zerngradR(int p, int Sz, polar *P, double *norm){
|
|
int n, m, i;
|
|
convert_Zidx(p, &n, &m);
|
|
if(n < 1) errx(1, "Order of gradient Z must be > 0!");
|
|
int m_abs = iabs(m);
|
|
double Zsum, K = 1.;
|
|
point *Sj = gradZR(n, m, Sz, P, &Zsum);
|
|
if(n != m_abs && n > 2){ // avoid trivial case: n = |m| (in case of n=2,m=0 n'=0 -> grad(0,0)=0
|
|
K = sqrt(((double)n+1.)/(n-1.));
|
|
Zsum = 0.;
|
|
point *Zj= gradZR(n-2, m, Sz, P, NULL);
|
|
point *Sptr = Sj, *Zptr = Zj;
|
|
for(i = 0; i < Sz; i++, Sptr++, Zptr++){
|
|
Sptr->x -= K * Zptr->x;
|
|
Sptr->y -= K * Zptr->y;
|
|
Zsum += Sptr->x * Sptr->x + Sptr->y * Sptr->y;
|
|
}
|
|
FREE(Zj);
|
|
}
|
|
if(norm) *norm = Zsum;
|
|
return Sj;
|
|
}
|
|
|
|
|
|
/**
|
|
* Decomposition of image with normals to wavefront by Zhao's polynomials
|
|
* by least squares method through LU-decomposition
|
|
* @param Nmax (i) - maximum power of Zernike polinomial for decomposition
|
|
* @param Sz, P(i) - size (Sz) of points array (P)
|
|
* @param grads(i) - wavefront gradients values in points P
|
|
* @param Zsz (o) - size of Z coefficients array
|
|
* @param lastIdx(o) - (if !NULL) last non-zero coefficient
|
|
* @return array of coefficients
|
|
*/
|
|
double *LS_gradZdecomposeR(int Nmax, int Sz, polar *P, point *grads, int *Zsz, int *lastIdx){
|
|
int pmax = (Nmax + 1) * (Nmax + 2) / 2; // max Z number in Noll notation
|
|
if(Zsz) *Zsz = pmax;
|
|
// Now allocate matrix: its Nth row is equation for Nth data point,
|
|
// Mth column is Z_M
|
|
int Sz2 = Sz*2, x, y;
|
|
gsl_matrix *M = gsl_matrix_calloc(Sz2, pmax);
|
|
// fill matrix with coefficients
|
|
size_t T = M->tda, S = T * Sz; // T is matrix stride, S - index of second coefficient
|
|
for(x = 1; x < pmax; x++){
|
|
double norm;
|
|
int n, m;
|
|
convert_Zidx(x, &n, &m);
|
|
point *dZcoeff = gradZR(n, m, Sz, P, &norm), *dZptr = dZcoeff;
|
|
//point *dZcoeff = zerngradR(x, Sz, P, &norm), *dZptr = dZcoeff;
|
|
double *ptr = &(M->data[x]);
|
|
// X-component is top part of resulting matrix, Y is bottom part
|
|
for(y = 0; y < Sz; y++, ptr+=T, dZptr++){ // fill xth polynomial
|
|
*ptr = dZptr->x;
|
|
ptr[S] = dZptr->y;
|
|
}
|
|
FREE(dZcoeff);
|
|
}
|
|
|
|
gsl_vector *ans = gsl_vector_calloc(pmax);
|
|
gsl_vector *b = gsl_vector_calloc(Sz2);
|
|
double *ptr = b->data;
|
|
for(x = 0; x < Sz; x++, ptr++, grads++){
|
|
// fill components of vector b like components of matrix M
|
|
*ptr = grads->x;
|
|
ptr[Sz] = grads->y;
|
|
}
|
|
|
|
gsl_vector *tau = gsl_vector_calloc(pmax);
|
|
gsl_linalg_QR_decomp(M, tau);
|
|
|
|
gsl_vector *residual = gsl_vector_calloc(Sz2);
|
|
gsl_linalg_QR_lssolve(M, tau, b, ans, residual);
|
|
ptr = &ans->data[1];
|
|
int maxIdx = 0;
|
|
double *Zidxs = MALLOC(double, pmax);
|
|
for(x = 1; x < pmax; x++, ptr++){
|
|
if(fabs(*ptr) < Z_prec) continue;
|
|
Zidxs[x] = *ptr;
|
|
maxIdx = x;
|
|
}
|
|
|
|
gsl_matrix_free(M);
|
|
gsl_vector_free(ans);
|
|
gsl_vector_free(b);
|
|
gsl_vector_free(tau);
|
|
gsl_vector_free(residual);
|
|
|
|
if(lastIdx) *lastIdx = maxIdx;
|
|
return Zidxs;
|
|
}
|
|
|
|
/**
|
|
* Decomposition of image with normals to wavefront by Zhao's polynomials
|
|
* @param Nmax (i) - maximum power of Zernike polinomial for decomposition
|
|
* @param Sz, P(i) - size (Sz) of points array (P)
|
|
* @param grads(i) - wavefront gradients values in points P
|
|
* @param Zsz (o) - size of Z coefficients array
|
|
* @param lastIdx(o) - (if !NULL) last non-zero coefficient
|
|
* @return array of coefficients
|
|
*/
|
|
double *gradZdecomposeR(int Nmax, int Sz, polar *P, point *grads, int *Zsz, int *lastIdx){
|
|
int i, pmax, maxIdx = 0;
|
|
pmax = (Nmax + 1) * (Nmax + 2) / 2; // max Z number in Noll notation
|
|
double *Zidxs = MALLOC(double, pmax);
|
|
point *icopy = MALLOC(point, Sz);
|
|
memcpy(icopy, grads, Sz*sizeof(point)); // make image copy to leave it unchanged
|
|
*Zsz = pmax;
|
|
for(i = 1; i < pmax; i++){ // now we fill array
|
|
double norm;
|
|
point *dZcoeff = zerngradR(i, Sz, P, &norm);
|
|
int j;
|
|
point *iptr = icopy, *zptr = dZcoeff;
|
|
double K = 0.;
|
|
for(j = 0; j < Sz; j++, iptr++, zptr++)
|
|
K += zptr->x*iptr->x + zptr->y*iptr->y; // multiply matrixes to get coefficient
|
|
K /= norm;
|
|
if(fabs(K) < Z_prec)
|
|
continue; // there's no need to substract values that are less than our precision
|
|
Zidxs[i] = K;
|
|
maxIdx = i;
|
|
iptr = icopy; zptr = dZcoeff;
|
|
for(j = 0; j < Sz; j++, iptr++, zptr++){
|
|
iptr->x -= K * zptr->x; // subtract composed coefficient to reduce high orders values
|
|
iptr->y -= K * zptr->y;
|
|
}
|
|
FREE(dZcoeff);
|
|
}
|
|
if(lastIdx) *lastIdx = maxIdx;
|
|
FREE(icopy);
|
|
return Zidxs;
|
|
}
|
|
|
|
/**
|
|
* Restoration of image with normals Zhao's polynomials coefficients
|
|
* all like Zcompose
|
|
* @return restored image
|
|
*/
|
|
point *gradZcomposeR(int Zsz, double *Zidxs, int Sz, polar *P){
|
|
int i;
|
|
point *image = MALLOC(point, Sz);
|
|
for(i = 1; i < Zsz; i++){ // now we fill array
|
|
double K = Zidxs[i];
|
|
if(fabs(K) < Z_prec) continue;
|
|
point *Zcoeff = zerngradR(i, Sz, P, NULL);
|
|
int j;
|
|
point *iptr = image, *zptr = Zcoeff;
|
|
for(j = 0; j < Sz; j++, iptr++, zptr++){
|
|
iptr->x += K * zptr->x;
|
|
iptr->y += K * zptr->y;
|
|
}
|
|
FREE(Zcoeff);
|
|
}
|
|
return image;
|
|
}
|