/* * This file is part of the bmp180 project. * Copyright 2022 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "BMP180.h" #include "i2c.h" #include "sensors_private.h" enum{ BMP180_OVERS_1 = 0, // oversampling is off BMP180_OVERS_2 = 1, BMP180_OVERS_4 = 2, BMP180_OVERS_8 = 3, BMP180_OVERSMAX = 3 }; #define BMP180_CHIP_ID 0x55 /** * BMP180 registers */ #define BMP180_REG_OXLSB (0xF8) #define BMP180_REG_OLSB (0xF7) #define BMP180_REG_OMSB (0xF6) #define BMP180_REG_OUT (BMP180_REG_OMSB) #define BMP180_REG_CTRLMEAS (0xF4) #define BMP180_REG_SOFTRESET (0xE0) #define BMP180_REG_ID (0xD0) #define BMP180_REG_CALIB (0xAA) // shift for oversampling #define BMP180_CTRLM_OSS_SHIFT (6) // start measurement #define BMP180_CTRLM_SCO (1<<5) // measurements of P flag #define BMP180_CTRLM_PRES (1<<4) // write it to BMP180_REG_SOFTRESET for soft reset #define BMP180_SOFTRESET_VAL (0xB6) // start measurement of T/P #define BMP180_READ_T (0x0E) #define BMP180_READ_P (0x14) // mind that user can't change this static const uint8_t bmp180_os = BMP180_OVERSMAX; typedef struct { int16_t AC1; int16_t AC2; int16_t AC3; uint16_t AC4; uint16_t AC5; uint16_t AC6; int16_t B1; int16_t B2; int16_t MB; int16_t MC; int16_t MD; int32_t MCfix; int32_t AC1_fix; int32_t Tuncomp; // uncompensated T value uint8_t calibrated; // ==1 if calibration done } __attribute__ ((packed)) CaliData_t; /* static void BMP180_setOS(BMP180_oversampling os){ bmp180_os = os & 0x03; }*/ // get compensation data, return 1 if OK static int readcompdata(sensor_t *s){ FNAME(); if(!s->privdata){ s->privdata = calloc(1, sizeof(CaliData_t)); DBG("ALLOCA"); } if(!i2c_read_data8(BMP180_REG_CALIB, sizeof(CaliData_t), (uint8_t*)s->privdata)) return FALSE; CaliData_t *CaliData = (CaliData_t*)s->privdata; // convert big-endian into little-endian uint16_t *arr = (uint16_t*)(s->privdata); for(int i = 0; i < 11; ++i) arr[i] = __builtin_bswap16(arr[i]); // prepare for further calculations CaliData->MCfix = CaliData->MC << 11; CaliData->AC1_fix = CaliData->AC1 << 2; CaliData->calibrated = 1; DBG("Calibration rdy"); return TRUE; } // do a soft-reset procedure static int BMP180_reset(sensor_t _U_ *s){ if(!i2c_write_reg8(BMP180_REG_SOFTRESET, BMP180_SOFTRESET_VAL)){ DBG("Can't reset\n"); return FALSE; } return TRUE; } // read compensation data & write registers static int BMP180_init(sensor_t *s){ s->status = SENS_NOTINIT; if(!BMP180_reset(s)) return FALSE; uint8_t devID; if(!i2c_read_reg8(BMP180_REG_ID, &devID)){ DBG("Can't read BMP180_REG_ID"); return FALSE; } DBG("Got device ID: 0x%02x", devID); if(devID != BMP180_CHIP_ID){ DBG("Not BMP180\n"); return FALSE; } if(!readcompdata(s)){ DBG("Can't read calibration data\n"); return FALSE; }else{ #ifdef EBUG CaliData_t *CaliData = (CaliData_t*)s->privdata; #endif DBG("AC1=%d, AC2=%d, AC3=%d, AC4=%u, AC5=%u, AC6=%u", CaliData->AC1, CaliData->AC2, CaliData->AC3, CaliData->AC4, CaliData->AC5, CaliData->AC6); DBG("B1=%d, B2=%d", CaliData->B1, CaliData->B2); DBG("MB=%d, MC=%d, MD=%d", CaliData->MB, CaliData->MC, CaliData->MD); } s->status = SENS_RELAX; return TRUE; } // start measurement, @return 1 if all OK static int BMP180_start(sensor_t *s){ if(!s->privdata || s->status == SENS_BUSY || ((CaliData_t*)s->privdata)->calibrated == 0) return FALSE; uint8_t reg = BMP180_READ_T | BMP180_CTRLM_SCO; if(!i2c_write_reg8(BMP180_REG_CTRLMEAS, reg)){ s->status = SENS_ERR; DBG("Can't write CTRL reg\n"); return FALSE; } s->status = SENS_BUSY; return TRUE; } // calculate T degC and P in Pa static inline void compens(sensor_t *s, uint32_t Pval){ CaliData_t *CaliData = (CaliData_t*)s->privdata; // T: int32_t X1 = ((CaliData->Tuncomp - CaliData->AC6)*CaliData->AC5) >> 15; int32_t X2 = CaliData->MCfix / (X1 + CaliData->MD); int32_t B5 = X1 + X2; s->data.T = (B5 + 8.) / 160.; // P: int32_t B6 = B5 - 4000; X1 = (CaliData->B2 * ((B6*B6) >> 12)) >> 11; X2 = (CaliData->AC2 * B6) >> 11; int32_t X3 = X1 + X2; int32_t B3 = (((CaliData->AC1_fix + X3) << bmp180_os) + 2) >> 2; X1 = (CaliData->AC3 * B6) >> 13; X2 = (CaliData->B1 * ((B6 * B6) >> 12)) >> 16; X3 = ((X1 + X2) + 2) >> 2; uint32_t B4 = (CaliData->AC4 * (uint32_t) (X3 + 32768)) >> 15; uint32_t B7 = (uint32_t)((int32_t)Pval - B3) * (50000 >> bmp180_os); int32_t p = 0; if(B7 < 0x80000000){ p = (B7 << 1) / B4; }else{ p = (B7 / B4) << 1; } X1 = p >> 8; X1 *= X1; X1 = (X1 * 3038) >> 16; X2 = (-7357 * p) / 65536; s->data.P = (p + ((X1 + X2 + 3791) / 16)) / 100.; // convert to hPa } static sensor_status_t BMP180_process(sensor_t *s){ uint8_t reg, stat; uint8_t uncomp_data[3]; CaliData_t *CaliData = (CaliData_t*)s->privdata; if(s->status != SENS_BUSY) goto ret; if(!i2c_read_reg8(BMP180_REG_CTRLMEAS, &stat)){ s->status = SENS_ERR; goto ret; } DBG("stat=0x%02X", stat); if(stat & BMP180_CTRLM_SCO) goto ret; // still measure if((stat & BMP180_CTRLM_PRES) == 0){ // wait for temperature // get uncompensated data DBG("Read uncompensated T\n"); if(!i2c_read_data8(BMP180_REG_OUT, 2, uncomp_data)){ s->status = SENS_ERR; goto ret; } CaliData->Tuncomp = uncomp_data[0] << 8 | uncomp_data[1]; DBG("Tuncomp=%d, Start P measuring\n", CaliData->Tuncomp); reg = BMP180_READ_P | BMP180_CTRLM_SCO | (bmp180_os << BMP180_CTRLM_OSS_SHIFT); if(!i2c_write_reg8(BMP180_REG_CTRLMEAS, reg)){ s->status = SENS_ERR; goto ret; } }else{ // wait for pressure DBG("Read uncompensated P\n"); if(!i2c_read_data8(BMP180_REG_OUT, 3, uncomp_data)){ s->status = SENS_ERR; goto ret; } uint32_t Pval = uncomp_data[0] << 16 | uncomp_data[1] << 8 | uncomp_data[2]; Pval >>= (8 - bmp180_os); DBG("Puncomp=%d", Pval); // calculate compensated values compens(s, Pval); DBG("All data ready\n"); s->status = SENS_RDY; // data ready } ret: return s->status; } static sensor_props_t BMP180_props(sensor_t _U_ *s){ sensor_props_t p = {.T = 1, .P = 1}; return p; } static int s_heater(sensor_t _U_ *s, int _U_ on){ return FALSE; } sensor_t BMP180 = { .name = "BMP180", .address = 0x77, .status = SENS_NOTINIT, .init = BMP180_init, .start = BMP180_start, .heater = s_heater, .process = BMP180_process, .properties = BMP180_props, };