/* * slalib_and_sofa.c - calculate apparent place by slalib & libsofa * * Copyright 2016 Edward V. Emelianov * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. */ #define _GNU_SOURCE 1111 // strcasecmp #include "sofa.h" #include #include #include #define DBG(...) printf(__VA_ARGS__) extern void sla_caldj(int*, int*, int*, double*, int*); extern void sla_amp(double*, double*, double*, double*, double*, double*); extern void sla_map(double*, double*, double*, double*, double*,double*, double*, double*, double*, double*); void slacaldj(int y, int m, int d, double *djm, int *j){ int iy = y, im = m, id = d; sla_caldj(&iy, &im, &id, djm, j); } void slaamp(double ra, double da, double date, double eq, double *rm, double *dm ){ double r = ra, d = da, mjd = date, equi = eq; sla_amp(&r, &d, &mjd, &equi, rm, dm); } // rm,dm - mean RA,Dec (rad), pr,pd - RA,Dec changes per Julian year (dRA/dt, dDec/dt) // px - parallax (arcsec), rv - radial speed (km/sec, +ve if receding) // eq - epoch and equinox of star data (Julian) // date - TDB for apparent place (JD-2400000.5) void slamap(double rm, double dm, double pr, double pd, double px, double rv, double eq, double date, double *ra, double *da){ double r = rm, d = dm, p1 = pr, p2 = pd, ppx = px, prv = rv, equi = eq, dd = date; sla_map(&r, &d, &p1, &p2, &ppx, &prv, &equi, &dd, ra, da); } void reprd(char* s, double ra, double dc){ char pm; int i[4]; printf ( "%30s", s ); iauA2tf ( 7, ra, &pm, i ); printf ( " %2.2d %2.2d %2.2d.%7.7d", i[0],i[1],i[2],i[3] ); iauA2af ( 6, dc, &pm, i ); printf ( " %c%2.2d %2.2d %2.2d.%6.6d\n", pm, i[0],i[1],i[2],i[3] ); } void radtodeg(double r){ int i[4]; char pm; int rem = (int)(r / D2PI); if(rem) r -= D2PI * rem; if(r > DPI) r -= D2PI; else if(r < -DPI) r += D2PI; iauA2af (2, r, &pm, i); printf("%c%02d %02d %02d.%2.d", pm, i[0],i[1],i[2],i[3]); } double getta(char *str){ int a,b,s = 1; double c; if(3 != sscanf(str, "%d:%d:%lf", &a,&b,&c)) return -1; if(a < 0){ s = -1; a = -a;} c /= 3600.; c += a + b/60.; c *= s; return c; } int main (int argc, char **argv){ double rc, dc; if(argc == 3){ rc = getta(argv[1]) * DPI / 12; dc = getta(argv[2]) * DD2R; }else{ /* Star ICRS RA,Dec (radians). */ if ( iauTf2a ( ' ', 19, 50, 47.6, &rc ) ) return -1; if ( iauAf2a ( '+', 8, 52, 12.3, &dc ) ) return -1; } reprd ( "ICRS, epoch J2000.0:", rc, dc ); struct tm tms; time_t t = time(NULL); gmtime_r(&t, &tms); int y, m, d, err; y = 1900 + tms.tm_year; m = tms.tm_mon + 1; d = tms.tm_mday; double mjd, add = ((double)tms.tm_hour + (double)tms.tm_min/60.0 + tms.tm_sec/3600.0) / 24.; DBG("Date: (d/m/y +frac) %d/%d/%d +%g\n", d, m, y, add); slacaldj(y, m, d, &mjd, &err); if(err){ fprintf(stderr, "slacaldj(): Wrong %s!", (err == 1) ? "year" : (err == 2? "month" : "day")); return -1; } mjd += add; DBG("MJD by slalib: %g\n", mjd); double utc1, utc2; /* UTC date. */ if(iauDtf2d("UTC", y, m, d, tms.tm_hour, tms.tm_min, tms.tm_sec, &utc1, &utc2)) return -1; DBG("UTC by sofa: %g, %g\n", utc1 - 2400000.5, utc2); double tai1, tai2, tt1, tt2; /* TT date. */ if ( iauUtctai ( utc1, utc2, &tai1, &tai2 ) ) return -1; if ( iauTaitt ( tai1, tai2, &tt1, &tt2 ) ) return -1; DBG("date by sofa (utc/tt): %g/%g & %g/%g\n", tai1 - 2400000.5, tt1 - 2400000.5, tai2, tt2); double pmra=0, pr=0, pd=0, px=0, rv=0; /* // Proper motion: RA/Dec derivatives, epoch J2000.0. pmra = 536.23e-3 * DAS2R; pr = atan2 ( pmra, cos(dc) ); pd = 385.29e-3 * DAS2R; // Parallax (arcsec) and recession speed (km/s). px = 0.19495; rv = -26.1;*/ double ri, di, eo; /* ICRS to CIRS (geocentric observer). */ iauAtci13 ( rc, dc, pr, pd, px, rv, tt1, tt2, &ri, &di, &eo ); reprd ( "catalog -> CIRS:", ri, di ); double rca, dca; /* CIRS to ICRS (astrometric). */ iauAtic13 ( ri, di, tt1, tt2, &rca, &dca, &eo ); reprd ( "CIRS -> astrometric:", rca, dca ); /* ICRS (astrometric) to CIRS (geocentric observer). */ iauAtci13 ( rca, dca, 0.0, 0.0, 0.0, 0.0, tt1, tt2, &ri, &di, &eo ); reprd ( "astrometric -> CIRS:", ri, di ); double ra, da; /* Apparent place. */ ra = iauAnp ( ri - eo ); da = di; reprd ( "geocentric apparent:", ra, da ); slamap(rc, dc, pmra, pd, px, rv, 2000., mjd, &ra, &da); reprd ( "geocentric apparent (sla):", ra, da ); double ra2000, decl2000; slaamp(ra, da, mjd, 2000.0, &ra2000, &decl2000); reprd ( "apparent -> astrometric (sla):", ra2000, decl2000); double elong, phi, hm, phpa, tc, rh, wl, xp, yp, dut1; /* Site longitude, latitude (radians) and height above the geoid (m). */ iauAf2a ( '+', 41, 26, 26.45, &elong ); iauAf2a ( '+', 43, 39, 12.69, &phi ); hm = 2070.0; /* Ambient pressure (HPa), temperature (C) and rel. humidity (frac). */ phpa = 770.0; // milliBar or hectopascal tc = -5.0; rh = 0.7; /* Effective wavelength (microns) */ wl = 0.55; /* EOPs: polar motion in radians, UT1-UTC in seconds. */ xp = 0.1074 * DAS2R; //polarX yp = 0.2538 * DAS2R;//polarY dut1 = 0.13026 ; // DUT1 /* ICRS to observed. */ double aob, zob, hob, dob, rob; if ( iauAtco13 ( rc, dc, pr, pd, px, rv, utc1, utc2, dut1, elong, phi, hm, xp, yp, phpa, tc, rh, wl, &aob, &zob, &hob, &dob, &rob, &eo ) ) return -1; reprd ( "ICRS -> observed:", rob, dob ); printf("A(bta)/Z: "); radtodeg(aob); printf("("); radtodeg(DPI-aob); printf(")/"); radtodeg(zob); printf("\n"); if( iauAtoc13 ( "R", rc, dc, utc1, utc2, dut1, //if( iauAtoc13 ( "R", rob, dob, 2451545, 0, dut1, elong, phi, hm, xp, yp, phpa, tc, rh, wl, &rca, &dca )) return -1; reprd ( "observed -> astrometric:", rca, dca ); return 0; }