/* * This file is part of the mxl90640wPi project. * Copyright 2022 Edward V. Emelianov . * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include "mlx90640.h" #include "mlx90640_regs.h" static int I2Cfd = -1; static uint8_t lastaddr = 0; static MLX90640_params params; static uint16_t dataarray[MLX_DMA_MAXLEN]; // array for raw data from sensor static double mlx_image[MLX_PIXNO]; // ready image #define CREG_VAL(reg) dataarray[CREG_IDX(reg)] #define IMD_VAL(reg) dataarray[IMD_IDX(reg)] // reg_control values for subpage #0 and #1 static const uint16_t reg_control_val[2] = { REG_CONTROL_CHESS | REG_CONTROL_RES18 | REG_CONTROL_REFR_64HZ | REG_CONTROL_SUBPSEL | REG_CONTROL_DATAHOLD | REG_CONTROL_SUBPEN, REG_CONTROL_CHESS | REG_CONTROL_RES18 | REG_CONTROL_REFR_64HZ | REG_CONTROL_SUBP1 | REG_CONTROL_SUBPSEL | REG_CONTROL_DATAHOLD | REG_CONTROL_SUBPEN }; static int errctr = 0; static double Tlast = 0.; #define chstate() do{errctr = 0; Tlast = dtime(); DBG("chstate()");}while(0) #define chkerr() do{DBG("chkerr(), T=%g", dtime()-Tlast); if(++errctr > MLX_MAXERR_COUNT){ DBG("-> M_ERROR"); return FALSE;}else continue;}while(0) #define chktmout() do{DBG("chktmout, T=%g", dtime()-Tlast); if(dtime() - Tlast > MLX_TIMEOUT){ DBG("Timeout! -> M_ERROR"); return FALSE;}else continue;}while(0) // read register value static int read_reg(uint16_t regaddr, uint16_t *data){ if(I2Cfd < 1) return FALSE; struct i2c_msg m[2]; struct i2c_rdwr_ioctl_data x = {.msgs = m, .nmsgs = 2}; m[0].addr = lastaddr; m[1].addr = lastaddr; m[0].flags = 0; m[1].flags = I2C_M_RD; m[0].len = 2; m[1].len = 2; uint8_t a[2], d[2] = {0}; a[0] = regaddr >> 8; a[1] = regaddr & 0xff; m[0].buf = a; m[1].buf = d; if(ioctl(I2Cfd, I2C_RDWR, &x) < 0) return FALSE; if(data) *data = (uint16_t)((d[0] << 8) | (d[1])); return TRUE; } //#if 0 // Sometimes don't work :( // read N values starting from regaddr static int read_regN(uint16_t regaddr, uint16_t *data, uint16_t N){ if(I2Cfd < 1 || N > 128 || N == 0) return FALSE; struct i2c_msg m[2]; struct i2c_rdwr_ioctl_data x = {.msgs = m, .nmsgs = 2}; m[0].addr = lastaddr; m[1].addr = lastaddr; m[0].flags = 0; m[1].flags = I2C_M_RD; m[0].len = 2; m[1].len = N * 2; uint8_t a[2], d[256] = {0}; a[0] = regaddr >> 8; a[1] = regaddr & 0xff; m[0].buf = a; m[1].buf = d; if(ioctl(I2Cfd, I2C_RDWR, &x) < 0) return FALSE; if(data) for(int i = 0; i < N; ++i){ *data++ = (uint16_t)((d[2*i] << 8) | (d[2*i + 1])); } return TRUE; } // blocking read N uint16_t values starting from `reg` // @param reg - register to read // @param N (io) - amount of bytes to read / bytes read // @return `dataarray` or NULL if failed static uint16_t *read_data(uint16_t reg, uint16_t *N){ if(I2Cfd < 1 || !N || *N < 1) return NULL; uint16_t n = *N; if(n < 1 || n > MLX_DMA_MAXLEN) return NULL; uint16_t *data = dataarray; uint16_t got = 0, rest = *N; do{ uint8_t l = (rest > 128) ? 128 : (uint8_t)rest; if(!read_regN(reg, data, l)){ DBG("can't read"); break; } rest -= l; reg += l; data += l; got += l; }while(rest); *N = got; return dataarray; } //#endif #if 0 // blocking read N uint16_t values starting from `reg` // @param reg - register to read // @param N (io) - amount of bytes to read / bytes read // @return `dataarray` or NULL if failed static uint16_t *read_data(uint16_t reg, uint16_t *N){ if(I2Cfd < 1 || !N || *N < 1) return NULL; uint16_t n = *N; if(n < 1 || n > MLX_DMA_MAXLEN) return NULL; uint16_t i, *data = dataarray; for(i = 0; i < n; ++i){ if(!read_reg(reg++, data++)){ DBG("can't read"); break; } } *N = i; return dataarray; } #endif // write register value static int write_reg(uint16_t regaddr, uint16_t data){ if(I2Cfd < 1) return FALSE; union i2c_smbus_data d; d.block[0] = 3; d.block[1] = regaddr & 0xff; d.block[2] = data >> 8; d.block[3] = data & 0xff; struct i2c_smbus_ioctl_data args; args.read_write = I2C_SMBUS_WRITE; args.command = regaddr >> 8; args.size = I2C_SMBUS_I2C_BLOCK_DATA; args.data = &d; if(ioctl(I2Cfd, I2C_SMBUS, &args) < 0) return FALSE; return TRUE; } int mlx90640_set_slave_address(uint8_t addr){ if(I2Cfd < 1) return FALSE; if(ioctl (I2Cfd, I2C_SLAVE, addr) < 0) return FALSE; lastaddr = addr; return TRUE; } static void dumpIma(double *im){ for(int row = 0; row < MLX_H; ++row){ for(int col = 0; col < MLX_W; ++col){ printf("%5.1f ", *im++); } printf("\n"); } } void mlx90640_dump_parameters(){ printf("kVdd=%d\nvdd25=%d\nKvPTAT=%g\nKtPTAT=%g\nvPTAT25=%d\n", params.kVdd, params.vdd25, params.KvPTAT, params.KtPTAT, params.vPTAT25); printf("alphaPTAT=%g\ngainEE=%d\ntgc=%g\ncpKv=%g\ncpKta=%g\n", params.alphaPTAT, params.gainEE, params.tgc, params.cpKta, params.cpKta); printf("KsTa=%g\nCT[]={%g, %g, %g}\n", params.KsTa, params.CT[0], params.CT[1], params.CT[2]); printf("ksTo[]={"); for(int i = 0; i < 4; ++i) printf("%s%g", (i) ? ", " : "", params.ksTo[i]); printf("}\n"); printf("alphacorr[]={"); for(int i = 0; i < 4; ++i) printf("%s%g", (i) ? ", " : "", params.alphacorr[i]); printf("}\n"); printf("alpha[]=\n"); dumpIma(params.alpha); printf("offset[]=\n"); dumpIma(params.offset); printf("kta[]=\n"); dumpIma(params.kta); printf("kv[]={"); for(int i = 0; i < 4; ++i) printf("%s%g", (i) ? ", " : "", params.kv[i]); printf("}\n"); printf("cpAlpha[]={%g, %g}\n", params.cpAlpha[0], params.cpAlpha[1]); printf("cpOffset[]={%d, %d}\n", params.cpOffset[0], params.cpOffset[1]); printf("outliers[]=\n"); uint8_t *o = params.outliers; for(int row = 0; row < MLX_H; ++row){ for(int col = 0; col < MLX_W; ++col){ printf("%d ", *o++); } printf("\n"); } } /***************************************************************************** Calculate parameters & values *****************************************************************************/ // fill OCC/ACC row/col arrays static void occacc(int8_t *arr, int l, uint16_t *regstart){ int n = l >> 2; // divide by 4 int8_t *p = arr; for(int i = 0; i < n; ++i){ register uint16_t val = *regstart++; *p++ = (val & 0x000F) >> 0; *p++ = (val & 0x00F0) >> 4; *p++ = (val & 0x0F00) >> 8; *p++ = (val ) >> 12; } for(int i = 0; i < l; ++i, ++arr){ if(*arr > 0x07) *arr -= 0x10; } } // get all parameters' values from `dataarray`, return FALSE if something failed static int get_parameters(){ int8_t i8; int16_t i16; uint16_t *pu16; uint16_t val = CREG_VAL(REG_VDD); i8 = (int8_t) (val >> 8); params.kVdd = i8 * 32; // keep sign if(params.kVdd == 0) return FALSE; i16 = val & 0xFF; params.vdd25 = ((i16 - 0x100) * 32) - (1<<13); val = CREG_VAL(REG_KVTPTAT); i16 = (val & 0xFC00) >> 10; if(i16 > 0x1F) i16 -= 0x40; params.KvPTAT = (double)i16 / (1<<12); i16 = (val & 0x03FF); if(i16 > 0x1FF) i16 -= 0x400; params.KtPTAT = (double)i16 / 8.; params.vPTAT25 = (int16_t) CREG_VAL(REG_PTAT); val = CREG_VAL(REG_APTATOCCS) >> 12; params.alphaPTAT = val / 4. + 8.; params.gainEE = (int16_t)CREG_VAL(REG_GAIN); if(params.gainEE == 0) return FALSE; int8_t occRow[MLX_H]; int8_t occColumn[MLX_W]; occacc(occRow, MLX_H, &CREG_VAL(REG_OCCROW14)); occacc(occColumn, MLX_W, &CREG_VAL(REG_OCCCOL14)); int8_t accRow[MLX_H]; int8_t accColumn[MLX_W]; occacc(accRow, MLX_H, &CREG_VAL(REG_ACCROW14)); occacc(accColumn, MLX_W, &CREG_VAL(REG_ACCCOL14)); val = CREG_VAL(REG_APTATOCCS); // need to do multiplication instead of bitshift, so: double occRemScale = 1<<(val&0x0F), occColumnScale = 1<<((val>>4)&0x0F), occRowScale = 1<<((val>>8)&0x0F); int16_t offavg = (int16_t) CREG_VAL(REG_OSAVG); // even/odd column/row numbers are for starting from 1, so for starting from 0 we chould swap them: // even - for 1,3,5,...; odd - for 0,2,4,... etc int8_t ktaavg[4]; // 0 - odd row, odd col; 1 - odd row even col; 2 - even row, odd col; 3 - even row, even col val = CREG_VAL(REG_KTAAVGODDCOL); ktaavg[2] = (int8_t)(val & 0xFF); // odd col, even row -> col 0,2,..; row 1,3,.. ktaavg[0] = (int8_t)(val >> 8); // odd col, odd row -> col 0,2,..; row 0,2,.. val = CREG_VAL(REG_KTAAVGEVENCOL); ktaavg[3] = (int8_t)(val & 0xFF); // even col, even row -> col 1,3,..; row 1,3,.. ktaavg[1] = (int8_t)(val >> 8); // even col, odd row -> col 1,3,..; row 0,2,.. // so index of ktaavg is 2*(row&1)+(col&1) val = CREG_VAL(REG_KTAVSCALE); uint8_t scale1 = ((val & 0xFF)>>4) + 8, scale2 = (val&0xF); if(scale1 == 0 || scale2 == 0) return FALSE; double mul = (double)(1<> 12); diva *= (double)(1<<30); // alpha_scale double accRowScale = 1<<((val & 0x0f00)>>8), accColumnScale = 1<<((val & 0x00f0)>>4), accRemScale = 1<<(val & 0x0f); pu16 = &CREG_VAL(REG_OFFAK1); double *kta = params.kta, *offset = params.offset; uint8_t *ol = params.outliers; for(int row = 0; row < MLX_H; ++row){ int idx = (row&1)<<1; for(int col = 0; col < MLX_W; ++col){ // offset register uint16_t rv = *pu16++; i16 = (rv & 0xFC00) >> 10; if(i16 > 0x1F) i16 -= 0x40; *offset++ = (double)offavg + (double)occRow[row]*occRowScale + (double)occColumn[col]*occColumnScale + (double)i16*occRemScale; // kta i16 = (rv & 0xF) >> 1; if(i16 > 0x03) i16 -= 0x08; *kta++ = (ktaavg[idx|(col&1)] + i16*mul) / div; // alpha i16 = (rv & 0x3F0) >> 4; if(i16 > 0x1F) i16 -= 0x40; double oft = (double)a_r + accRow[row]*accRowScale + accColumn[col]*accColumnScale +i16*accRemScale; *a++ = oft / diva; *ol++ = (rv&1) ? 1 : 0; } } scale1 = (CREG_VAL(REG_KTAVSCALE) >> 8) & 0xF; // kvscale div = (double)(1<> 12; if(i16 > 0x07) i16 -= 0x10; ktaavg[0] = (int8_t)i16; // odd col, odd row i16 = (val & 0xF0) >> 4; if(i16 > 0x07) i16 -= 0x10; ktaavg[1] = (int8_t)i16; // even col, odd row i16 = (val & 0x0F00) >> 8; if(i16 > 0x07) i16 -= 0x10; ktaavg[2] = (int8_t)i16; // odd col, even row i16 = val & 0x0F; if(i16 > 0x07) i16 -= 0x10; ktaavg[3] = (int8_t)i16; // even col, even row for(int i = 0; i < 4; ++i) params.kv[i] = ktaavg[i] / div; val = CREG_VAL(REG_CPOFF); params.cpOffset[0] = (val & 0x03ff); if(params.cpOffset[0] > 0x1ff) params.cpOffset[0] -= 0x400; params.cpOffset[1] = val >> 10; if(params.cpOffset[1] > 0x1f) params.cpOffset[1] -= 0x40; params.cpOffset[1] += params.cpOffset[0]; val = ((CREG_VAL(REG_KTAVSCALE) & 0xF0) >> 4) + 8; i8 = (int8_t)(CREG_VAL(REG_KVTACP) & 0xFF); params.cpKta = (double)i8 / (1<> 8; i16 = CREG_VAL(REG_KVTACP) >> 8; if(i16 > 0x7F) i16 -= 0x100; params.cpKv = (double)i16 / (1< 0x7F) i16 -= 0x100; params.tgc = (double)i16; params.tgc /= 32.; val = (CREG_VAL(REG_SCALEACC)>>12); // alpha_scale_CP i16 = CREG_VAL(REG_ALPHA)>>10; // cp_P1_P0_ratio if(i16 > 0x1F) i16 -= 0x40; div = (double)(1<> 8); params.KsTa = (double)i8/(1<<13); div = 1<<((CREG_VAL(REG_CT34) & 0x0F) + 8); // kstoscale DBG("kstoscale=%g (regct34=0x%04x)", div, CREG_VAL(REG_CT34)); val = CREG_VAL(REG_KSTO12); DBG("ksto12=0x%04x", val); i8 = (int8_t)(val & 0xFF); DBG("To1ee=%d", i8); params.ksTo[0] = i8 / div; i8 = (int8_t)(val >> 8); DBG("To2ee=%d", i8); params.ksTo[1] = i8 / div; val = CREG_VAL(REG_KSTO34); DBG("ksto34=0x%04x", val); i8 = (int8_t)(val & 0xFF); DBG("To3ee=%d", i8); params.ksTo[2] = i8 / div; i8 = (int8_t)(val >> 8); DBG("To4ee=%d", i8); params.ksTo[3] = i8 / div; params.CT[0] = 0.; // 0degr - between ranges 1 and 2 val = CREG_VAL(REG_CT34); mul = ((val & 0x3000)>>12)*10.; // step params.CT[1] = ((val & 0xF0)>>4)*mul; // CT3 - between ranges 2 and 3 params.CT[2] = ((val & 0x0F00) >> 8)*mul + params.CT[1]; // CT4 - between ranges 3 and 4 params.alphacorr[0] = 1./(1. + params.ksTo[0] * 40.); params.alphacorr[1] = 1.; params.alphacorr[2] = (1. + params.ksTo[2] * params.CT[1]); params.alphacorr[3] = (1. + params.ksTo[3] * (params.CT[2] - params.CT[1])) * params.alphacorr[2]; // Don't forget to check 'outlier' flags for wide purpose return TRUE; } /** * @brief process_subpage - calculate all parameters from `dataarray` into `mlx_image` * @param subpageno - number of subpage * @param simpleimage == 0 - simplest, 1 - narrow range, 2 - extended range */ static void process_subpage(int subpageno, int simpleimage){ DBG("\nprocess_subpage(%d)", subpageno); #ifdef EBUG chstate(); #endif int16_t i16a = (int16_t)IMD_VAL(REG_IVDDPIX); double dvdd = i16a - params.vdd25; dvdd = dvdd / params.kVdd; DBG("Vd=%g", dvdd+3.3); i16a = (int16_t)IMD_VAL(REG_ITAPTAT); int16_t i16b = (int16_t)IMD_VAL(REG_ITAVBE); double dTa = (double)i16a / (i16a * params.alphaPTAT + i16b); // vptatart dTa *= (double)(1<<18); dTa = (dTa / (1 + params.KvPTAT*dvdd) - params.vPTAT25); dTa = dTa / params.KtPTAT; // without 25degr - Ta0 DBG("Ta=%g", dTa+25.); i16a = (int16_t)IMD_VAL(REG_IGAIN); double Kgain = params.gainEE / (double)i16a; DBG("Kgain=%g", Kgain); // now make first approximation to image uint16_t pixno = 0; // current pixel number - for indexing in parameters etc for(int row = 0; row < MLX_H; ++row){ int idx = (row&1)<<1; // index for params.kv for(int col = 0; col < MLX_W; ++col, ++pixno){ uint8_t sp = (row&1)^(col&1); // subpage of current pixel if(sp != subpageno) continue; double curval = (double)((int16_t)dataarray[pixno]) * Kgain; // gain compensation curval -= params.offset[pixno] * (1. + params.kta[pixno]*dTa) * (1. + params.kv[idx|(col&1)]*dvdd); // add offset double IRcompens = curval; // IR_compensated if(simpleimage == 0){ curval -= params.cpOffset[subpageno] * (1. - params.cpKta * dTa) * (1. + params.cpKv * dvdd); // CP curval = IRcompens - params.tgc * curval; // IR gradient compens }else{ double alphaComp = params.alpha[pixno] - params.tgc * params.cpAlpha[subpageno]; alphaComp /= 1. + params.KsTa * dTa; // calculate To for basic range double Tar = dTa + 273.15 + 25.; Tar = Tar*Tar*Tar*Tar; double ac3 = alphaComp*alphaComp*alphaComp; double Sx = ac3*IRcompens + alphaComp*ac3*Tar; Sx = params.KsTa * sqrt(sqrt(Sx)); double To = IRcompens / (alphaComp * (1. - 273.15*params.ksTo[1]) + Sx) + Tar; curval = sqrt(sqrt(To)) - 273.15; // To // extended range if(simpleimage == 2){ int idx = 0; // range 1 by default double ctx = -40.; if(curval > params.CT[0] && curval < params.CT[1]){ // range 2 idx = 1; ctx = params.CT[0]; }else if(curval < params.CT[2]){ // range 3 idx = 2; ctx = params.CT[1]; }else{ // range 4 idx = 3; ctx = params.CT[2]; } To = IRcompens / (alphaComp * params.alphacorr[idx] * (1. + params.ksTo[idx]*(curval - ctx))) + Tar; curval = sqrt(sqrt(To)) - 273.15; } } mlx_image[pixno] = curval; } } DBG("Time: %g", dtime()-Tlast); } static int process_readconf(){ chstate(); while(1){ if(get_parameters()) return TRUE; else chkerr(); } } static int process_firstrun(){ uint16_t reg, N; write_reg(REG_CONTROL, REG_CONTROL_DEFAULT); usleep(50); write_reg(REG_CONTROL, REG_CONTROL_DEFAULT); usleep(50); chstate(); while(1){ if(write_reg(REG_CONTROL, reg_control_val[0]) && read_reg(REG_CONTROL, ®)){ DBG("REG_CTRL=0x%04x, T=%g", reg, dtime()-Tlast); if(read_reg(REG_STATUS, ®)) DBG("REG_STATUS=0x%04x", reg); N = REG_CALIDATA_LEN; if(read_data(REG_CALIDATA, &N)){ DBG("-> M_READCONF, T=%g", dtime()-Tlast); return process_readconf(); }else chkerr(); }else chkerr(); } return FALSE; } // start image acquiring for next subpage static int process_startima(int subpageno){ chstate(); DBG("startima(%d)", subpageno); uint16_t reg, N; while(1){ // write `overwrite` flag twice if(!write_reg(REG_CONTROL, reg_control_val[subpageno]) || !write_reg(REG_STATUS, REG_STATUS_OVWEN) || !write_reg(REG_STATUS, REG_STATUS_OVWEN)) chkerr(); while(1){ if(read_reg(REG_STATUS, ®)){ if(reg & REG_STATUS_NEWDATA){ DBG("got newdata: %g", dtime() - Tlast); if(subpageno != (reg & REG_STATUS_SPNO)){ DBG("wrong subpage number -> M_ERROR"); return FALSE; }else{ // all OK, run image reading chstate(); write_reg(REG_STATUS, 0); // clear rdy bit N = MLX_PIXARRSZ; if(read_data(REG_IMAGEDATA, &N) && N == MLX_PIXARRSZ){ DBG("got readoutm N=%d: %g", N, dtime() - Tlast); return TRUE; }else chkerr(); } }else chktmout(); }else chkerr(); } } return FALSE; } void mlx90640_restart(){ memset(¶ms, 0, sizeof(params)); process_firstrun(); } // if state of MLX allows, make an image else return error // @param simple ==1 for simplest image processing (without T calibration) int mlx90640_take_image(uint8_t simple, double **image){ if(I2Cfd < 1) return FALSE; if(params.kVdd == 0){ // no parameters -> make first run if(!process_firstrun()) return FALSE; } DBG("\n\n\n-> M_STARTIMA"); for(int sp = 0; sp < 2; ++sp){ if(!process_startima(sp)) return FALSE; // get first subpage process_subpage(sp, simple); } if(image) *image = mlx_image; return TRUE; } int mlx90640_init(const char *dev, uint8_t ID){ if(I2Cfd > 0) close(I2Cfd); I2Cfd = open(dev, O_RDWR); if(I2Cfd < 1) return FALSE; if(!mlx90640_set_slave_address(ID)) return FALSE; if(!read_reg(0, NULL)) return FALSE; if(!process_firstrun()) return FALSE; return TRUE; }