2021-10-18 17:24:03 +03:00

501 lines
15 KiB
C

/*
* binmorph.c - functions for morphological operations on binary image
*
* Copyright 2015 Edward V. Emelianoff <eddy@sao.ru>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h> // memcpy
#include <math.h>
#include <sys/time.h>
#include "binmorph.h"
#include "debug.h"
#include "imagefile.h"
// global arrays for erosion/dilation masks
static uint8_t *ER = NULL, *DIL = NULL;
/*
* =================== AUXILIARY FUNCTIONS ===================>
*/
/**
* This function inits masks arrays for erosion and dilation
* You may call it yourself or it will be called when one of
* `erosion` or `dilation` functions will be ran first time
*/
static void morph_init(){
if(ER) return;
ER = MALLOC(uint8_t, 256);
DIL = MALLOC(uint8_t, 256);
OMP_FOR()
for(int i = 0; i < 256; i++){
ER[i] = i & ((i << 1) | 1) & ((i >> 1) | (0x80)); // don't forget that << and >> set borders to zero
DIL[i] = i | (i << 1) | (i >> 1);
}
}
/*
* =================== MORPHOLOGICAL OPERATIONS ===================>
*/
/**
* Remove all non-4-connected pixels
* @param image (i) - input image
* @param W, H - size of binarized image (in pixels)
* @return allocated memory area with converted input image
*/
uint8_t *filter4(uint8_t *image, int W, int H){
//FNAME();
if(W < MINWIDTH || H < MINHEIGHT) return NULL;
uint8_t *ret = MALLOC(uint8_t, W*H);
int W0 = (W + 7) / 8; // width in bytes
int w = W0-1, h = H-1;
{
// top of image, y = 0
#define IM_UP
#include "fc_filter.h"
#undef IM_UP
}
{
// mid of image, y = 1..h-1
#include "fc_filter.h"
}
{
// image bottom, y = h
#define IM_DOWN
#include "fc_filter.h"
#undef IM_DOWN
}
return ret;
}
/**
* Remove all non-8-connected pixels (single points)
* @param image (i) - input image
* @param W, H - size of binarized image (in pixels)
* @return allocated memory area with converted input image
*/
uint8_t *filter8(uint8_t *image, int W, int H){
//FNAME();
if(W < MINWIDTH || H < MINHEIGHT) return NULL;
uint8_t *ret = MALLOC(uint8_t, W*H);
int W0 = (W + 7) / 8; // width in bytes
int w = W0-1, h = H-1;
{
#define IM_UP
#include "ec_filter.h"
#undef IM_UP
}
{
#include "ec_filter.h"
}
{
#define IM_DOWN
#include "ec_filter.h"
#undef IM_DOWN
}
return ret;
}
/**
* Make morphological operation of dilation
* @param image (i) - input image
* @param W, H - size of image (pixels)
* @return allocated memory area with dilation of input image
*/
uint8_t *dilation(uint8_t *image, int W, int H){
//FNAME();
if(W < MINWIDTH || H < MINHEIGHT) return NULL;
int W0 = (W + 7) / 8; // width in bytes
int w = W0-1, h = H-1, rest = 7 - (W - w*8);
uint8_t lastmask = ~(1<<rest);
if(!DIL) morph_init();
uint8_t *ret = MALLOC(uint8_t, W0*H);
{
// top of image, y = 0
#define IM_UP
#include "dilation.h"
#undef IM_UP
}
{
// mid of image, y = 1..h-1
#include "dilation.h"
}
{
// image bottom, y = h
#define IM_DOWN
#include "dilation.h"
#undef IM_DOWN
}
return ret;
}
/**
* Make morphological operation of erosion by cross 3x3 pixels
* @param image (i) - input image
* @param W, H - size of image (in pixels)
* @return allocated memory area with erosion of input image
*/
uint8_t *erosion(uint8_t *image, int W, int H){
//FNAME();
if(W < MINWIDTH || H < MINHEIGHT) return NULL;
if(!ER) morph_init();
int W0 = (W + 7) / 8; // width in bytes
int w = W0-1, h = H-1, rest = 8 - (W - w*8);
uint8_t lastmask = ~(1<<rest);
uint8_t *ret = MALLOC(uint8_t, W0*H);
//DBG("rest=%d, mask:0x%x", rest, lastmask);
OMP_FOR()
for(int y = 1; y < h; y++){ // reset first & last rows of image
uint8_t *iptr = &image[W0*y];
uint8_t *optr = &ret[W0*y];
register uint8_t p;
// x == 0, reset left bit
p = ER[*iptr] & *iptr & iptr[-W0] & iptr[W0];
if(!(*(++iptr) & 0x80)) p &= 0xfe;
*optr++ = p & 0x7f;
for(int x = 1; x < w; x++, iptr++, optr++){
p = ER[*iptr] & *iptr & iptr[-W0] & iptr[W0];
if(!(iptr[-1] & 1)) p &= 0x7f;
if(!(iptr[1] & 0x80)) p &= 0xfe;
*optr = p;
}
// x == w, reset right bit
p = ER[*iptr] & *iptr & iptr[-W0] & iptr[W0];
if(!(iptr[-1] & 1)) p &= 0x7f;
*optr = p & lastmask;
}
return ret;
}
// Make erosion N times
uint8_t *erosionN(uint8_t *image, int W, int H, int N){
//FNAME();
if(W < 1 || H < 1) return NULL;
if(W < MINWIDTH || H < MINHEIGHT || N < 1){
uint8_t *copy = MALLOC(uint8_t, W*H);
memcpy(copy, image, W*H);
return copy;
}
uint8_t *cur = image, *next = NULL;
for(int i = 0; i < N; ++i){
next = erosion(cur, W, H);
if(cur != image) FREE(cur);
cur = next;
}
return next;
}
// Make dilation N times
uint8_t *dilationN(uint8_t *image, int W, int H, int N){
//FNAME();
if(W < 1 || H < 1) return NULL;
if(W < MINWIDTH || H < MINHEIGHT || N < 1){
uint8_t *copy = MALLOC(uint8_t, W*H);
memcpy(copy, image, W*H);
return copy;
}
uint8_t *cur = image, *next = NULL;
for(int i = 0; i < N; ++i){
next = dilation(cur, W, H);
if(cur != image) FREE(cur);
cur = next;
}
return next;
}
// Ntimes opening
uint8_t *openingN(uint8_t *image, int W, int H, int N){
//FNAME();
if(W < MINWIDTH || H < MINHEIGHT || N < 1) return NULL;
uint8_t *er = erosionN(image, W, H, N);
uint8_t *op = dilationN(er, W, H, N);
FREE(er);
return op;
}
// Ntimes closing
uint8_t *closingN(uint8_t *image, int W, int H, int N){
//FNAME();
if(W < MINWIDTH || H < MINHEIGHT || N < 1) return NULL;
uint8_t *di = dilationN(image, W, H, N);
uint8_t *cl = erosionN(di, W, H, N);
FREE(di);
return cl;
}
// top hat operation: image - opening(image)
uint8_t *topHat(uint8_t *image, int W, int H, int N){
//FNAME();
if(W < MINWIDTH || H < MINHEIGHT || N < 1) return NULL;
uint8_t *op = openingN(image, W, H, N);
int W0 = (W + 7) / 8; // width in bytes
int wh = W0 * H;
OMP_FOR()
for(int i = 0; i < wh; ++i)
op[i] = image[i] & (~op[i]);
return op;
}
// bottom hat operation: closing(image) - image
uint8_t *botHat(uint8_t *image, int W, int H, int N){
//FNAME();
if(W < MINWIDTH || H < MINHEIGHT || N < 1) return NULL;
uint8_t *op = closingN(image, W, H, N);
int W0 = (W + 7) / 8; // width in bytes
int wh = W0 * H;
OMP_FOR()
for(int i = 0; i < wh; ++i)
op[i] &= ~image[i];
return op;
}
/*
* <=================== MORPHOLOGICAL OPERATIONS ===================
*/
/*
* =================== LOGICAL OPERATIONS ===================>
*/
#if 0
/**
* Logical AND of two images
* @param im1, im2 (i) - two images
* @param W, H - their size (of course, equal for both images)
* @return allocated memory area with image = (im1 AND im2)
*/
uint8_t *imand(uint8_t *im1, uint8_t *im2, int W, int H){
uint8_t *ret = MALLOC(uint8_t, W*H);
int y;
OMP_FOR()
for(y = 0; y < H; y++){
int x, S = y*W;
uint8_t *rptr = &ret[S], *p1 = &im1[S], *p2 = &im2[S];
for(x = 0; x < W; x++)
*rptr++ = *p1++ & *p2++;
}
return ret;
}
/**
* Substitute image 2 from image 1: reset to zero all bits of image 1 which set to 1 on image 2
* @param im1, im2 (i) - two images
* @param W, H - their size (of course, equal for both images)
* @return allocated memory area with image = (im1 AND (!im2))
*/
uint8_t *substim(uint8_t *im1, uint8_t *im2, int W, int H){
uint8_t *ret = MALLOC(uint8_t, W*H);
int y;
OMP_FOR()
for(y = 0; y < H; y++){
int x, S = y*W;
uint8_t *rptr = &ret[S], *p1 = &im1[S], *p2 = &im2[S];
for(x = 0; x < W; x++)
*rptr++ = *p1++ & (~*p2++);
}
return ret;
}
#endif
/*
* <=================== LOGICAL OPERATIONS ===================
*/
/*
* =================== CONNECTED COMPONENTS LABELING ===================>
*/
//#define TESTMSGS
#ifdef TESTMSGS
#define TEST(...) printf(__VA_ARGS__)
#else
#define TEST(...)
#endif
// check table and rename all "oldval" into "newval"
static inline void remark(size_t newval, size_t oldval, size_t *assoc){
TEST("\tnew = %zd, old=%zd; ", newval, oldval);
// find the least values
do{newval = assoc[newval];}while(assoc[newval] != newval);
do{oldval = assoc[oldval];}while(assoc[oldval] != oldval);
TEST("\trealnew = %zd, realold=%zd ", newval, oldval);
// now change larger value to smaller
if(newval > oldval){
assoc[newval] = oldval;
TEST("change %zd to %zd\n", newval, oldval);
}else{
assoc[oldval] = newval;
TEST("change %zd to %zd\n", oldval, newval);
}
}
/**
* label 4-connected components on image
* (slow algorythm, but easy to parallel)
*
* @param I (i) - image ("packed")
* @param W,H - size of the image (W - width in pixels)
* @param CC (o) - connected components boxes
* @return an array of labeled components
*/
size_t *cclabel4(uint8_t *Img, int W, int H, ConnComps **CC){
size_t *assoc;
if(W < MINWIDTH || H < MINHEIGHT) return NULL;
uint8_t *f = filter4(Img, W, H); // remove all non 4-connected pixels
//DBG("convert to size_t");
size_t *labels = bin2ST(f, W, H);
FREE(f);
//DBG("Calculate");
size_t Nmax = W*H/4; // max number of 4-connected labels
assoc = MALLOC(size_t, Nmax); // allocate memory for "remark" array
size_t last_assoc_idx = 1; // last index filled in assoc array
for(int y = 0; y < H; ++y){
bool found = false;
size_t *ptr = &labels[y*W];
size_t curmark = 0; // mark of pixel to the left
for(int x = 0; x < W; ++x, ++ptr){
if(!*ptr){found = false; continue;} // empty pixel
size_t U = (y) ? ptr[-W] : 0; // upper mark
if(found){ // there's a pixel to the left
if(U && U != curmark){ // meet old mark -> remark one of them in assoc[]
TEST("(%d, %d): remark %zd --> %zd\n", x, y, U, curmark);
remark(U, curmark, assoc);
curmark = U; // change curmark to upper mark (to reduce further checks)
}
}else{ // new mark -> change curmark
found = true;
if(U) curmark = U; // current mark will copy upper value
else{ // current mark is new value
curmark = last_assoc_idx++;
assoc[curmark] = curmark;
TEST("(%d, %d): new mark=%zd\n", x, y, curmark);
}
}
*ptr = curmark;
}
}
size_t *indexes = MALLOC(size_t, last_assoc_idx); // new indexes
size_t cidx = 1;
TEST("\n\n\nRebuild indexes\n\n");
for(size_t i = 1; i < last_assoc_idx; ++i){
TEST("%zd\t%zd ",i,assoc[i]);
// search new index
register size_t realnew = i, newval = 0;
do{
realnew = assoc[realnew];
TEST("->%zd ", realnew);
if(indexes[realnew]){ // find least index
newval = indexes[realnew];
TEST("real: %zd ", newval);
break;
}
}while(assoc[realnew] != realnew);
if(newval){
TEST(" ==> %zd\n", newval);
indexes[i] = newval;
continue;
}
TEST("new index %zd\n", cidx);
// enter next label
indexes[i] = cidx++;
}
// cidx now is amount of detected objects + 1 - size of output array (0th idx is not used)
//DBG("amount after rebuild: %zd", cidx-1);
#ifdef TESTMSGS
printf("\n\n\nI\tASS[I]\tIDX[I]\n");
for(size_t i = 1; i < last_assoc_idx; ++i)
printf("%zd\t%zd\t%zd\n",i,assoc[i],indexes[i]);
#endif
Box *boxes = MALLOC(Box, cidx);
OMP_FOR()
for(size_t i = 1; i < cidx; ++i){ // init borders
boxes[i].xmin = W;
boxes[i].ymin = H;
}
#pragma omp parallel shared(boxes)
{
Box *l_boxes = MALLOC(Box, cidx);
for(size_t i = 1; i < cidx; ++i){ // init borders
l_boxes[i].xmin = W;
l_boxes[i].ymin = H;
}
#pragma omp for nowait
for(int y = 0; y < H; ++y){
size_t *lptr = &labels[y*W];
for(int x = 0; x < W; ++x, ++lptr){
if(!*lptr) continue;
register size_t mark = indexes[*lptr];
*lptr = mark;
Box *b = &l_boxes[mark];
++b->area;
if(b->xmax < x) b->xmax = x;
if(b->xmin > x) b->xmin = x;
if(b->ymax < y) b->ymax = y;
if(b->ymin > y) b->ymin = y;
}
}
#pragma omp critical
for(size_t i = 1; i < cidx; ++i){
Box *ob = &boxes[i], *ib = &l_boxes[i];
if(ob->xmax < ib->xmax) ob->xmax = ib->xmax;
if(ob->xmin > ib->xmin) ob->xmin = ib->xmin;
if(ob->ymax < ib->ymax) ob->ymax = ib->ymax;
if(ob->ymin > ib->ymin) ob->ymin = ib->ymin;
ob->area += ib->area;
}
FREE(l_boxes);
}
FREE(assoc);
FREE(indexes);
#ifdef TESTMSGS
for(size_t i = 1; i < cidx; ++i){
printf("%8zd\t%6d\t(%4d..%4d, %4d..%4d)\t%.2f\n", i, boxes[i].area,
boxes[i].xmin, boxes[i].xmax, boxes[i].ymin, boxes[i].ymax,
(1.+boxes[i].xmax-boxes[i].xmin)/(1.+boxes[i].ymax-boxes[i].ymin));
}printf("\n\n");
#endif
if(CC){
*CC = MALLOC(ConnComps, 1);
(*CC)->Nobj = cidx; (*CC)->boxes = boxes;
}else{
FREE(boxes);
}
return labels;
}
#if 0
// label 8-connected components, look cclabel4
size_t *cclabel8(size_t *labels, int W, int H, size_t *Nobj){
if(W < MINWIDTH || H < MINHEIGHT) return NULL;
#define LABEL_8
#include "cclabling.h"
#undef LABEL_8
return labels;
}
#endif
/*
* <=================== CONNECTED COMPONENTS LABELING ===================
*/
/*
* <=================== template ===================>
*/