mirror of
https://github.com/eddyem/astrovideoguide_v3.git
synced 2025-12-06 02:35:11 +03:00
447 lines
16 KiB
C
447 lines
16 KiB
C
/*
|
|
* This file is part of the loccorr project.
|
|
* Copyright 2021 Edward V. Emelianov <edward.emelianoff@gmail.com>.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// FOR MEDIATOR:
|
|
// Copyright (c) 2011 ashelly.myopenid.com under <http://www.opensource.org/licenses/mit-license>
|
|
|
|
|
|
// TODO: resolve problem with borders
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "config.h"
|
|
#include "debug.h"
|
|
#include "imagefile.h"
|
|
#include "median.h"
|
|
|
|
|
|
#define ELEM_SWAP(a, b) {register Imtype t = a; a = b; b = t;}
|
|
#define PIX_SORT(a, b) {if (p[a] > p[b]) ELEM_SWAP(p[a], p[b]);}
|
|
|
|
static inline Imtype mean(Imtype a, Imtype b){
|
|
register uint16_t x = ((uint16_t)a + (uint16_t)b) / 2;
|
|
return (Imtype)x;
|
|
}
|
|
|
|
static Imtype opt_med2(Imtype *p){
|
|
return mean(p[0], p[1]);
|
|
}
|
|
static Imtype opt_med3(Imtype *p){
|
|
PIX_SORT(0, 1); PIX_SORT(1, 2); PIX_SORT(0, 1);
|
|
return(p[1]) ;
|
|
}
|
|
static Imtype opt_med4(Imtype *p){
|
|
PIX_SORT(0, 2); PIX_SORT(1, 3);
|
|
PIX_SORT(0, 1); PIX_SORT(2, 3);
|
|
return mean(p[1], p[2]);
|
|
}
|
|
static Imtype opt_med5(Imtype *p){
|
|
PIX_SORT(0, 1); PIX_SORT(3, 4); PIX_SORT(0, 3);
|
|
PIX_SORT(1, 4); PIX_SORT(1, 2); PIX_SORT(2, 3) ;
|
|
PIX_SORT(1, 2);
|
|
return(p[2]) ;
|
|
}
|
|
// even values are from "FAST, EFFICIENT MEDIAN FILTERS WITH EVEN LENGTH WINDOWS", J.P. HAVLICEK, K.A. SAKADY, G.R.KATZ
|
|
static Imtype opt_med6(Imtype *p){
|
|
PIX_SORT(1, 2); PIX_SORT(3, 4);
|
|
PIX_SORT(0, 1); PIX_SORT(2, 3); PIX_SORT(4, 5);
|
|
PIX_SORT(1, 2); PIX_SORT(3, 4);
|
|
PIX_SORT(0, 1); PIX_SORT(2, 3); PIX_SORT(4, 5);
|
|
PIX_SORT(1, 2); PIX_SORT(3, 4);
|
|
return mean(p[2], p[3]);
|
|
}
|
|
static Imtype opt_med7(Imtype *p){
|
|
PIX_SORT(0, 5); PIX_SORT(0, 3); PIX_SORT(1, 6);
|
|
PIX_SORT(2, 4); PIX_SORT(0, 1); PIX_SORT(3, 5);
|
|
PIX_SORT(2, 6); PIX_SORT(2, 3); PIX_SORT(3, 6);
|
|
PIX_SORT(4, 5); PIX_SORT(1, 4); PIX_SORT(1, 3);
|
|
PIX_SORT(3, 4); return (p[3]);
|
|
}
|
|
// optimal Batcher's sort for 8 elements (http://myopen.googlecode.com/svn/trunk/gtkclient_tdt/include/fast_median.h)
|
|
static Imtype opt_med8(Imtype *p){
|
|
PIX_SORT(0, 4); PIX_SORT(1, 5); PIX_SORT(2, 6);
|
|
PIX_SORT(3, 7); PIX_SORT(0, 2); PIX_SORT(1, 3);
|
|
PIX_SORT(4, 6); PIX_SORT(5, 7); PIX_SORT(2, 4);
|
|
PIX_SORT(3, 5); PIX_SORT(0, 1); PIX_SORT(2, 3);
|
|
PIX_SORT(4, 5); PIX_SORT(6, 7); PIX_SORT(1, 4);
|
|
PIX_SORT(3, 6);
|
|
return mean(p[3], p[4]);
|
|
}
|
|
static Imtype opt_med9(Imtype *p){
|
|
PIX_SORT(1, 2); PIX_SORT(4, 5); PIX_SORT(7, 8);
|
|
PIX_SORT(0, 1); PIX_SORT(3, 4); PIX_SORT(6, 7);
|
|
PIX_SORT(1, 2); PIX_SORT(4, 5); PIX_SORT(7, 8);
|
|
PIX_SORT(0, 3); PIX_SORT(5, 8); PIX_SORT(4, 7);
|
|
PIX_SORT(3, 6); PIX_SORT(1, 4); PIX_SORT(2, 5);
|
|
PIX_SORT(4, 7); PIX_SORT(4, 2); PIX_SORT(6, 4);
|
|
PIX_SORT(4, 2); return(p[4]);
|
|
}
|
|
static Imtype opt_med16(Imtype *p){
|
|
PIX_SORT(0, 8); PIX_SORT(1, 9); PIX_SORT(2, 10); PIX_SORT(3, 11);
|
|
PIX_SORT(4, 12); PIX_SORT(5, 13); PIX_SORT(6, 14); PIX_SORT(7, 15);
|
|
PIX_SORT(0, 4); PIX_SORT(1, 5); PIX_SORT(2, 6); PIX_SORT(3, 7);
|
|
PIX_SORT(8, 12); PIX_SORT(9, 13); PIX_SORT(10, 14); PIX_SORT(11, 15);
|
|
PIX_SORT(4, 8); PIX_SORT(5, 9); PIX_SORT(6, 10); PIX_SORT(7, 11);
|
|
PIX_SORT(0, 2); PIX_SORT(1, 3); PIX_SORT(4, 6); PIX_SORT(5, 7);
|
|
PIX_SORT(8, 10); PIX_SORT(9, 11); PIX_SORT(12, 14); PIX_SORT(13, 15);
|
|
PIX_SORT(2, 8); PIX_SORT(3, 9); PIX_SORT(6, 12); PIX_SORT(7, 13);
|
|
PIX_SORT(2, 4); PIX_SORT(3, 5); PIX_SORT(6, 8); PIX_SORT(7, 9);
|
|
PIX_SORT(10, 12); PIX_SORT(11, 13); PIX_SORT(0, 1); PIX_SORT(2, 3);
|
|
PIX_SORT(4, 5); PIX_SORT(6, 7); PIX_SORT(8, 9); PIX_SORT(10, 11);
|
|
PIX_SORT(12, 13); PIX_SORT(14, 15); PIX_SORT(1, 8); PIX_SORT(3, 10);
|
|
PIX_SORT(5, 12); PIX_SORT(7, 14); PIX_SORT(5, 8); PIX_SORT(7, 10);
|
|
return mean(p[7], p[8]);
|
|
}
|
|
static Imtype opt_med25(Imtype *p){
|
|
PIX_SORT(0, 1) ; PIX_SORT(3, 4) ; PIX_SORT(2, 4) ;
|
|
PIX_SORT(2, 3) ; PIX_SORT(6, 7) ; PIX_SORT(5, 7) ;
|
|
PIX_SORT(5, 6) ; PIX_SORT(9, 10) ; PIX_SORT(8, 10) ;
|
|
PIX_SORT(8, 9) ; PIX_SORT(12, 13); PIX_SORT(11, 13) ;
|
|
PIX_SORT(11, 12); PIX_SORT(15, 16); PIX_SORT(14, 16) ;
|
|
PIX_SORT(14, 15); PIX_SORT(18, 19); PIX_SORT(17, 19) ;
|
|
PIX_SORT(17, 18); PIX_SORT(21, 22); PIX_SORT(20, 22) ;
|
|
PIX_SORT(20, 21); PIX_SORT(23, 24); PIX_SORT(2, 5) ;
|
|
PIX_SORT(3, 6) ; PIX_SORT(0, 6) ; PIX_SORT(0, 3) ;
|
|
PIX_SORT(4, 7) ; PIX_SORT(1, 7) ; PIX_SORT(1, 4) ;
|
|
PIX_SORT(11, 14); PIX_SORT(8, 14) ; PIX_SORT(8, 11) ;
|
|
PIX_SORT(12, 15); PIX_SORT(9, 15) ; PIX_SORT(9, 12) ;
|
|
PIX_SORT(13, 16); PIX_SORT(10, 16); PIX_SORT(10, 13) ;
|
|
PIX_SORT(20, 23); PIX_SORT(17, 23); PIX_SORT(17, 20) ;
|
|
PIX_SORT(21, 24); PIX_SORT(18, 24); PIX_SORT(18, 21) ;
|
|
PIX_SORT(19, 22); PIX_SORT(8, 17) ; PIX_SORT(9, 18) ;
|
|
PIX_SORT(0, 18) ; PIX_SORT(0, 9) ; PIX_SORT(10, 19) ;
|
|
PIX_SORT(1, 19) ; PIX_SORT(1, 10) ; PIX_SORT(11, 20) ;
|
|
PIX_SORT(2, 20) ; PIX_SORT(2, 11) ; PIX_SORT(12, 21) ;
|
|
PIX_SORT(3, 21) ; PIX_SORT(3, 12) ; PIX_SORT(13, 22) ;
|
|
PIX_SORT(4, 22) ; PIX_SORT(4, 13) ; PIX_SORT(14, 23) ;
|
|
PIX_SORT(5, 23) ; PIX_SORT(5, 14) ; PIX_SORT(15, 24) ;
|
|
PIX_SORT(6, 24) ; PIX_SORT(6, 15) ; PIX_SORT(7, 16) ;
|
|
PIX_SORT(7, 19) ; PIX_SORT(13, 21); PIX_SORT(15, 23) ;
|
|
PIX_SORT(7, 13) ; PIX_SORT(7, 15) ; PIX_SORT(1, 9) ;
|
|
PIX_SORT(3, 11) ; PIX_SORT(5, 17) ; PIX_SORT(11, 17) ;
|
|
PIX_SORT(9, 17) ; PIX_SORT(4, 10) ; PIX_SORT(6, 12) ;
|
|
PIX_SORT(7, 14) ; PIX_SORT(4, 6) ; PIX_SORT(4, 7) ;
|
|
PIX_SORT(12, 14); PIX_SORT(10, 14); PIX_SORT(6, 7) ;
|
|
PIX_SORT(10, 12); PIX_SORT(6, 10) ; PIX_SORT(6, 17) ;
|
|
PIX_SORT(12, 17); PIX_SORT(7, 17) ; PIX_SORT(7, 10) ;
|
|
PIX_SORT(12, 18); PIX_SORT(7, 12) ; PIX_SORT(10, 18) ;
|
|
PIX_SORT(12, 20); PIX_SORT(10, 20); PIX_SORT(10, 12) ;
|
|
return (p[12]);
|
|
}
|
|
#undef PIX_SORT
|
|
#define PIX_SORT(a, b) {if (a > b) ELEM_SWAP(a, b);}
|
|
/**
|
|
* quick select - algo for approximate median calculation for array idata of size n
|
|
*/
|
|
static Imtype quick_select(Imtype *idata, int n){
|
|
int low, high;
|
|
int median;
|
|
int middle, ll, hh;
|
|
Imtype *arr = MALLOC(Imtype, n);
|
|
memcpy(arr, idata, n*sizeof(Imtype));
|
|
low = 0 ; high = n-1 ; median = (low + high) / 2;
|
|
for(;;){
|
|
if(high <= low) // One element only
|
|
break;
|
|
if(high == low + 1){ // Two elements only
|
|
PIX_SORT(arr[low], arr[high]) ;
|
|
break;
|
|
}
|
|
// Find median of low, middle and high Imtypes; swap into position low
|
|
middle = (low + high) / 2;
|
|
PIX_SORT(arr[middle], arr[high]) ;
|
|
PIX_SORT(arr[low], arr[high]) ;
|
|
PIX_SORT(arr[middle], arr[low]) ;
|
|
// Swap low Imtype (now in position middle) into position (low+1)
|
|
ELEM_SWAP(arr[middle], arr[low+1]) ;
|
|
// Nibble from each end towards middle, swapping Imtypes when stuck
|
|
ll = low + 1;
|
|
hh = high;
|
|
for(;;){
|
|
do ll++; while (arr[low] > arr[ll]);
|
|
do hh--; while (arr[hh] > arr[low]);
|
|
if(hh < ll) break;
|
|
ELEM_SWAP(arr[ll], arr[hh]) ;
|
|
}
|
|
// Swap middle Imtype (in position low) back into correct position
|
|
ELEM_SWAP(arr[low], arr[hh]) ;
|
|
// Re-set active partition
|
|
if (hh <= median) low = ll;
|
|
if (hh >= median) high = hh - 1;
|
|
}
|
|
Imtype ret = arr[median];
|
|
FREE(arr);
|
|
return ret;
|
|
}
|
|
#undef PIX_SORT
|
|
#undef ELEM_SWAP
|
|
|
|
/**
|
|
* calculate median of array idata with size n
|
|
*/
|
|
Imtype calc_median(Imtype *idata, int n){
|
|
if(!idata || n < 1){
|
|
WARNX("calc_median(): wrong dta"); return 0.;
|
|
}
|
|
typedef Imtype (*medfunc)(Imtype *p);
|
|
medfunc fn = NULL;
|
|
const medfunc fnarr[] = {opt_med2, opt_med3, opt_med4, opt_med5, opt_med6,
|
|
opt_med7, opt_med8, opt_med9};
|
|
if(n == 1) return *idata;
|
|
if(n < 10) fn = fnarr[n - 2];
|
|
else if(n == 16) fn = opt_med16;
|
|
else if(n == 25) fn = opt_med25;
|
|
if(fn){
|
|
return fn(idata);
|
|
}else{
|
|
return quick_select(idata, n);
|
|
}
|
|
}
|
|
|
|
#define ImtypeLess(a,b) ((a)<(b))
|
|
#define ImtypeMean(a,b) (((a)+(b))/2)
|
|
|
|
typedef struct Mediator_t{
|
|
Imtype* data; // circular queue of values
|
|
int* pos; // index into `heap` for each value
|
|
int* heap; // max/median/min heap holding indexes into `data`.
|
|
int N; // allocated size.
|
|
int idx; // position in circular queue
|
|
int ct; // count of Imtypes in queue
|
|
} Mediator;
|
|
|
|
/*--- Helper Functions ---*/
|
|
|
|
#define minCt(m) (((m)->ct-1)/2) //count of Imtypes in minheap
|
|
#define maxCt(m) (((m)->ct)/2) //count of Imtypes in maxheap
|
|
|
|
//returns 1 if heap[i] < heap[j]
|
|
static inline int mmless(Mediator* m, int i, int j){
|
|
return ImtypeLess(m->data[m->heap[i]],m->data[m->heap[j]]);
|
|
}
|
|
|
|
//swaps Imtypes i&j in heap, maintains indexes
|
|
static inline int mmexchange(Mediator* m, int i, int j){
|
|
int t = m->heap[i];
|
|
m->heap[i] = m->heap[j];
|
|
m->heap[j] = t;
|
|
m->pos[m->heap[i]] = i;
|
|
m->pos[m->heap[j]] = j;
|
|
return 1;
|
|
}
|
|
|
|
//swaps Imtypes i&j if i<j; returns true if swapped
|
|
static inline int mmCmpExch(Mediator* m, int i, int j){
|
|
return (mmless(m,i,j) && mmexchange(m,i,j));
|
|
}
|
|
|
|
//maintains minheap property for all Imtypes below i/2.
|
|
static inline void minSortDown(Mediator* m, int i){
|
|
for(; i <= minCt(m); i*=2){
|
|
if(i>1 && i < minCt(m) && mmless(m, i+1, i)) ++i;
|
|
if(!mmCmpExch(m,i,i/2)) break;
|
|
}
|
|
}
|
|
|
|
//maintains maxheap property for all Imtypes below i/2. (negative indexes)
|
|
static inline void maxSortDown(Mediator* m, int i){
|
|
for(; i >= -maxCt(m); i*=2){
|
|
if(i<-1 && i > -maxCt(m) && mmless(m, i, i-1)) --i;
|
|
if(!mmCmpExch(m,i/2,i)) break;
|
|
}
|
|
}
|
|
|
|
//maintains minheap property for all Imtypes above i, including median
|
|
//returns true if median changed
|
|
static inline int minSortUp(Mediator* m, int i){
|
|
while (i > 0 && mmCmpExch(m, i, i/2)) i /= 2;
|
|
return (i == 0);
|
|
}
|
|
|
|
//maintains maxheap property for all Imtypes above i, including median
|
|
//returns true if median changed
|
|
static inline int maxSortUp(Mediator* m, int i){
|
|
while (i < 0 && mmCmpExch(m, i/2, i)) i /= 2;
|
|
return (i == 0);
|
|
}
|
|
|
|
/*--- Public Interface ---*/
|
|
|
|
//creates new Mediator: to calculate `nImtypes` running median.
|
|
//mallocs single block of memory, caller must free.
|
|
static Mediator* MediatorNew(int nImtypes){
|
|
int size = sizeof(Mediator) + nImtypes*(sizeof(Imtype)+sizeof(int)*2);
|
|
Mediator* m = malloc(size);
|
|
m->data = (Imtype*)(m + 1);
|
|
m->pos = (int*) (m->data + nImtypes);
|
|
m->heap = m->pos + nImtypes + (nImtypes / 2); //points to middle of storage.
|
|
m->N = nImtypes;
|
|
m->ct = m->idx = 0;
|
|
while (nImtypes--){ //set up initial heap fill pattern: median,max,min,max,...
|
|
m->pos[nImtypes] = ((nImtypes+1)/2) * ((nImtypes&1)? -1 : 1);
|
|
m->heap[m->pos[nImtypes]] = nImtypes;
|
|
}
|
|
return m;
|
|
}
|
|
|
|
//Inserts Imtype, maintains median in O(lg nImtypes)
|
|
static void MediatorInsert(Mediator* m, Imtype v){
|
|
int isNew=(m->ct<m->N);
|
|
int p = m->pos[m->idx];
|
|
Imtype old = m->data[m->idx];
|
|
m->data[m->idx]=v;
|
|
m->idx = (m->idx+1) % m->N;
|
|
m->ct+=isNew;
|
|
if(p>0){ //new Imtype is in minHeap
|
|
if (!isNew && ImtypeLess(old,v)) minSortDown(m,p*2);
|
|
else if (minSortUp(m,p)) maxSortDown(m,-1);
|
|
}else if (p<0){ //new Imtype is in maxheap
|
|
if (!isNew && ImtypeLess(v,old)) maxSortDown(m,p*2);
|
|
else if (maxSortUp(m,p)) minSortDown(m, 1);
|
|
}else{ //new Imtype is at median
|
|
if (maxCt(m)) maxSortDown(m,-1);
|
|
if (minCt(m)) minSortDown(m, 1);
|
|
}
|
|
}
|
|
|
|
//returns median Imtype (or average of 2 when Imtype count is even)
|
|
static Imtype MediatorMedian(Mediator* m){
|
|
Imtype v = m->data[m->heap[0]];
|
|
if ((m->ct&1) == 0) v = ImtypeMean(v, m->data[m->heap[-1]]);
|
|
return v;
|
|
}
|
|
|
|
#if 0
|
|
// median + min/max
|
|
static Imtype MediatorStat(Mediator* m, Imtype *minval, Imtype *maxval){
|
|
Imtype v = m->data[m->heap[0]];
|
|
if ((m->ct&1) == 0) v = ImtypeMean(v, m->data[m->heap[-1]]);
|
|
Imtype min = v, max = v;
|
|
int i;
|
|
for(i = -maxCt(m); i < 0; ++i){
|
|
int v = m->data[m->heap[i]];
|
|
if(v < min) min = v;
|
|
}
|
|
*minval = min;
|
|
for(i = 1; i <= minCt(m); ++i){
|
|
int v = m->data[m->heap[i]];
|
|
if(v > max) max = v;
|
|
}
|
|
*maxval = max;
|
|
return v;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* filter image by median (seed*2 + 1) x (seed*2 + 1)
|
|
*/
|
|
Image *get_median(const Image *img, int seed){
|
|
if(seed < 1) return NULL;
|
|
size_t w = img->width, h = img->height;
|
|
Image *out = Image_sim(img);
|
|
Imtype *med = out->data, *inputima = img->data;
|
|
|
|
size_t blksz = seed * 2 + 1, fullsz = blksz * blksz;
|
|
#ifdef EBUG
|
|
double t0 = sl_dtime();
|
|
#endif
|
|
OMP_FOR(shared(inputima, med))
|
|
for(size_t x = seed; x < w - seed; ++x){
|
|
size_t xx, yy, xm = x + seed + 1, y, ymax = blksz - 1, xmin = x - seed;
|
|
Mediator* m = MediatorNew(fullsz);
|
|
// initial fill
|
|
for(yy = 0; yy < ymax; ++yy)
|
|
for(xx = xmin; xx < xm; ++xx)
|
|
MediatorInsert(m, inputima[xx + yy*w]);
|
|
ymax = 2*seed*w;
|
|
xmin += ymax;
|
|
xm += ymax;
|
|
ymax = h - seed;
|
|
size_t medidx = x + seed * w;
|
|
for(y = seed; y < ymax; ++y, xmin += w, xm += w, medidx += w){
|
|
for(xx = xmin; xx < xm; ++xx)
|
|
MediatorInsert(m, inputima[xx]);
|
|
med[medidx] = MediatorMedian(m);
|
|
}
|
|
free(m);
|
|
}
|
|
Image_minmax(out);
|
|
DBG("time for median filtering %zdx%zd of image %zdx%zd: %gs", blksz, blksz, w, h,
|
|
sl_dtime() - t0);
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* @brief get_stat - calculate floating statistics in (seed*2+1)^2
|
|
* @param in (i) - input image
|
|
* @param seed - radius of box
|
|
* @param mean (o) - mean by box (excluding borders)
|
|
* @param std (o) - STD by box (excluding borders)
|
|
* @retur 0 if error
|
|
*/
|
|
int get_stat(const Image *in, int seed, Image **mean, Image **std){
|
|
if(!in) return FALSE;
|
|
if(seed < 1 || seed > (in->width - 1)/2 || seed > (in->height - 1)/2) return FALSE;
|
|
#ifdef EBUG
|
|
double t0 = sl_dtime();
|
|
#endif
|
|
Image *M = NULL, *S = NULL;
|
|
if(mean) M = Image_sim(in);
|
|
if(std) S = Image_sim(in);
|
|
int ymax = in->height - seed, xmax = in->width - seed;
|
|
int hsz = (seed*2 + 1), sz = hsz * hsz, w = in->width;
|
|
OMP_FOR()
|
|
for(int y = seed; y < ymax; ++y){ // dumb calculations
|
|
int startidx = y*w + seed;
|
|
Imtype *om = (M) ? &M->data[startidx] : NULL;
|
|
Imtype *os = (S) ? &S->data[startidx] : NULL;
|
|
for(int x = seed; x < xmax; ++x){
|
|
double sum = 0, sum2 = 0;
|
|
int yb = y + seed + 1, xm = x - seed;
|
|
for(int yy = y - seed; yy < yb; ++yy){
|
|
Imtype *ptr = &in->data[yy * w + xm];
|
|
for(int xx = 0; xx < hsz; ++xx){
|
|
double d = *ptr++;
|
|
sum += d;
|
|
sum2 += d*d;
|
|
}
|
|
}
|
|
//DBG("sum=%g, sum2=%g, sz=%d", sum, sum2, sz);
|
|
sum /= sz;
|
|
if(om){
|
|
*om++ = (Imtype)sum;
|
|
//DBG("mean (%d, %d): %g", x, y, sum);
|
|
}
|
|
if(os) *os++ = (Imtype)sqrt(sum2/sz - sum*sum);
|
|
}
|
|
}
|
|
if(mean){
|
|
Image_minmax(M);
|
|
*mean = M;
|
|
}
|
|
if(std){
|
|
Image_minmax(S);
|
|
*std = S;
|
|
}
|
|
DBG("time for mean/sigma computation: %gs", sl_dtime() - t0);
|
|
return TRUE;
|
|
}
|