2016-06-23 10:27:10 +03:00

401 lines
12 KiB
Fortran

SUBROUTINE sla_SVD (M, N, MP, NP, A, W, V, WORK, JSTAT)
*+
* - - - -
* S V D
* - - - -
*
* Singular value decomposition (double precision)
*
* This routine expresses a given matrix A as the product of
* three matrices U, W, V:
*
* A = U x W x VT
*
* Where:
*
* A is any M (rows) x N (columns) matrix, where M.GE.N
* U is an M x N column-orthogonal matrix
* W is an N x N diagonal matrix with W(I,I).GE.0
* VT is the transpose of an N x N orthogonal matrix
*
* Note that M and N, above, are the LOGICAL dimensions of the
* matrices and vectors concerned, which can be located in
* arrays of larger PHYSICAL dimensions, given by MP and NP.
*
* Given:
* M,N i numbers of rows and columns in matrix A
* MP,NP i physical dimensions of array containing matrix A
* A d(MP,NP) array containing MxN matrix A
*
* Returned:
* A d(MP,NP) array containing MxN column-orthogonal matrix U
* W d(N) NxN diagonal matrix W (diagonal elements only)
* V d(NP,NP) array containing NxN orthogonal matrix V
* WORK d(N) workspace
* JSTAT i 0 = OK, -1 = A wrong shape, >0 = index of W
* for which convergence failed. See note 2, below.
*
* Notes:
*
* 1) V contains matrix V, not the transpose of matrix V.
*
* 2) If the status JSTAT is greater than zero, this need not
* necessarily be treated as a failure. It means that, due to
* chance properties of the matrix A, the QR transformation
* phase of the routine did not fully converge in a predefined
* number of iterations, something that very seldom occurs.
* When this condition does arise, it is possible that the
* elements of the diagonal matrix W have not been correctly
* found. However, in practice the results are likely to
* be trustworthy. Applications should report the condition
* as a warning, but then proceed normally.
*
* References:
* The algorithm is an adaptation of the routine SVD in the EISPACK
* library (Garbow et al 1977, EISPACK Guide Extension, Springer
* Verlag), which is a FORTRAN 66 implementation of the Algol
* routine SVD of Wilkinson & Reinsch 1971 (Handbook for Automatic
* Computation, vol 2, ed Bauer et al, Springer Verlag). These
* references give full details of the algorithm used here. A good
* account of the use of SVD in least squares problems is given in
* Numerical Recipes (Press et al 1986, Cambridge University Press),
* which includes another variant of the EISPACK code.
*
* Last revision: 8 September 2005
*
* Copyright P.T.Wallace. All rights reserved.
*
* License:
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (see SLA_CONDITIONS); if not, write to the
* Free Software Foundation, Inc., 59 Temple Place, Suite 330,
* Boston, MA 02111-1307 USA
*
*-
IMPLICIT NONE
INTEGER M,N,MP,NP
DOUBLE PRECISION A(MP,NP),W(N),V(NP,NP),WORK(N)
INTEGER JSTAT
* Maximum number of iterations in QR phase
INTEGER ITMAX
PARAMETER (ITMAX=30)
INTEGER L,L1,I,K,J,K1,ITS,I1
LOGICAL CANCEL
DOUBLE PRECISION G,SCALE,AN,S,X,F,H,C,Y,Z
* Variable initializations to avoid compiler warnings.
L = 0
L1 = 0
* Check that the matrix is the right shape
IF (M.LT.N) THEN
* No: error status
JSTAT = -1
ELSE
* Yes: preset the status to OK
JSTAT = 0
*
* Householder reduction to bidiagonal form
* ----------------------------------------
G = 0D0
SCALE = 0D0
AN = 0D0
DO I=1,N
L = I+1
WORK(I) = SCALE*G
G = 0D0
S = 0D0
SCALE = 0D0
IF (I.LE.M) THEN
DO K=I,M
SCALE = SCALE+ABS(A(K,I))
END DO
IF (SCALE.NE.0D0) THEN
DO K=I,M
X = A(K,I)/SCALE
A(K,I) = X
S = S+X*X
END DO
F = A(I,I)
G = -SIGN(SQRT(S),F)
H = F*G-S
A(I,I) = F-G
IF (I.NE.N) THEN
DO J=L,N
S = 0D0
DO K=I,M
S = S+A(K,I)*A(K,J)
END DO
F = S/H
DO K=I,M
A(K,J) = A(K,J)+F*A(K,I)
END DO
END DO
END IF
DO K=I,M
A(K,I) = SCALE*A(K,I)
END DO
END IF
END IF
W(I) = SCALE*G
G = 0D0
S = 0D0
SCALE = 0D0
IF (I.LE.M .AND. I.NE.N) THEN
DO K=L,N
SCALE = SCALE+ABS(A(I,K))
END DO
IF (SCALE.NE.0D0) THEN
DO K=L,N
X = A(I,K)/SCALE
A(I,K) = X
S = S+X*X
END DO
F = A(I,L)
G = -SIGN(SQRT(S),F)
H = F*G-S
A(I,L) = F-G
DO K=L,N
WORK(K) = A(I,K)/H
END DO
IF (I.NE.M) THEN
DO J=L,M
S = 0D0
DO K=L,N
S = S+A(J,K)*A(I,K)
END DO
DO K=L,N
A(J,K) = A(J,K)+S*WORK(K)
END DO
END DO
END IF
DO K=L,N
A(I,K) = SCALE*A(I,K)
END DO
END IF
END IF
* Overestimate of largest column norm for convergence test
AN = MAX(AN,ABS(W(I))+ABS(WORK(I)))
END DO
*
* Accumulation of right-hand transformations
* ------------------------------------------
DO I=N,1,-1
IF (I.NE.N) THEN
IF (G.NE.0D0) THEN
DO J=L,N
V(J,I) = (A(I,J)/A(I,L))/G
END DO
DO J=L,N
S = 0D0
DO K=L,N
S = S+A(I,K)*V(K,J)
END DO
DO K=L,N
V(K,J) = V(K,J)+S*V(K,I)
END DO
END DO
END IF
DO J=L,N
V(I,J) = 0D0
V(J,I) = 0D0
END DO
END IF
V(I,I) = 1D0
G = WORK(I)
L = I
END DO
*
* Accumulation of left-hand transformations
* -----------------------------------------
DO I=N,1,-1
L = I+1
G = W(I)
IF (I.NE.N) THEN
DO J=L,N
A(I,J) = 0D0
END DO
END IF
IF (G.NE.0D0) THEN
IF (I.NE.N) THEN
DO J=L,N
S = 0D0
DO K=L,M
S = S+A(K,I)*A(K,J)
END DO
F = (S/A(I,I))/G
DO K=I,M
A(K,J) = A(K,J)+F*A(K,I)
END DO
END DO
END IF
DO J=I,M
A(J,I) = A(J,I)/G
END DO
ELSE
DO J=I,M
A(J,I) = 0D0
END DO
END IF
A(I,I) = A(I,I)+1D0
END DO
*
* Diagonalisation of the bidiagonal form
* --------------------------------------
DO K=N,1,-1
K1 = K-1
* Iterate until converged
ITS = 0
DO WHILE (ITS.LT.ITMAX)
ITS = ITS+1
* Test for splitting into submatrices
CANCEL = .TRUE.
DO L=K,1,-1
L1 = L-1
IF (AN+ABS(WORK(L)).EQ.AN) THEN
CANCEL = .FALSE.
GO TO 10
END IF
* (Following never attempted for L=1 because WORK(1) is zero)
IF (AN+ABS(W(L1)).EQ.AN) GO TO 10
END DO
10 CONTINUE
* Cancellation of WORK(L) if L>1
IF (CANCEL) THEN
C = 0D0
S = 1D0
DO I=L,K
F = S*WORK(I)
IF (AN+ABS(F).EQ.AN) GO TO 20
G = W(I)
H = SQRT(F*F+G*G)
W(I) = H
C = G/H
S = -F/H
DO J=1,M
Y = A(J,L1)
Z = A(J,I)
A(J,L1) = Y*C+Z*S
A(J,I) = -Y*S+Z*C
END DO
END DO
20 CONTINUE
END IF
* Converged?
Z = W(K)
IF (L.EQ.K) THEN
* Yes: stop iterating
ITS = ITMAX
* Ensure singular values non-negative
IF (Z.LT.0D0) THEN
W(K) = -Z
DO J=1,N
V(J,K) = -V(J,K)
END DO
END IF
ELSE
* Not converged yet: set status if iteration limit reached
IF (ITS.EQ.ITMAX) JSTAT = K
* Shift from bottom 2x2 minor
X = W(L)
Y = W(K1)
G = WORK(K1)
H = WORK(K)
F = ((Y-Z)*(Y+Z)+(G-H)*(G+H))/(2D0*H*Y)
IF (ABS(F).LE.1D15) THEN
G = SQRT(F*F+1D0)
ELSE
G = ABS(F)
END IF
F = ((X-Z)*(X+Z)+H*(Y/(F+SIGN(G,F))-H))/X
* Next QR transformation
C = 1D0
S = 1D0
DO I1=L,K1
I = I1+1
G = WORK(I)
Y = W(I)
H = S*G
G = C*G
Z = SQRT(F*F+H*H)
WORK(I1) = Z
IF (Z.NE.0D0) THEN
C = F/Z
S = H/Z
ELSE
C = 1D0
S = 0D0
END IF
F = X*C+G*S
G = -X*S+G*C
H = Y*S
Y = Y*C
DO J=1,N
X = V(J,I1)
Z = V(J,I)
V(J,I1) = X*C+Z*S
V(J,I) = -X*S+Z*C
END DO
Z = SQRT(F*F+H*H)
W(I1) = Z
IF (Z.NE.0D0) THEN
C = F/Z
S = H/Z
END IF
F = C*G+S*Y
X = -S*G+C*Y
DO J=1,M
Y = A(J,I1)
Z = A(J,I)
A(J,I1) = Y*C+Z*S
A(J,I) = -Y*S+Z*C
END DO
END DO
WORK(L) = 0D0
WORK(K) = F
W(K) = X
END IF
END DO
END DO
END IF
END