338 lines
8.6 KiB
C

/*
* blinky.c
*
* Copyright 2014 Edward V. Emelianoff <eddy@sao.ru>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include "ports_definition.h"
#include "interrupts.h"
#include "main.h"
#include "stepper.h"
unsigned long Global_time = 0L; // global time in ms
U16 paused_val = 500; // interval between LED flashing
U8 drill_works = 0; // flag of working motor
U8 auto_speed = 0;
U8 UART_rx[UART_BUF_LEN]; // cycle buffer for received data
U8 UART_rx_start_i = 0; // started index of received data (from which reading starts)
U8 UART_rx_cur_i = 0; // index of current first byte in rx array (to which data will be written)
/*
* 0 0000
* 1 0001
* 2 0010
* 3 0011
* 4 0100
* 5 0101
* 6 0110
* 7 0111
* 8 1000
* 9 1001
*10 1010
*11 1011
*12 1100
*13 1101
*14 1110
*15 1111
*/
// microsteps: DCBA = 1000, 1100, 0100, 0110, 0010, 0011, 0001, 1001 -- for ULN
// what a shit is this > DCBA = 0001, 0010, 0110, 1010, 1001, 1000, 0100, 0000 - bipolar
// 1000, 1010, 0010, 0110, 0100, 0101, 0001, 1001 - half-step
// 1010, 0110, 0101, 1001 - full step
char usteps[8] =
#ifdef MOTOR_TYPE_UNIPOLAR
{8, 12, 4, 6, 2, 3, 1, 9}; // ULN - unipolar
#elif defined MOTOR_TYPE_BIPOLAR
{8, 10, 2, 6, 4, 5, 1, 9}; // bipolar
#else
#error Define MOTOR_TYPE_UNIPOLAR or MOTOR_TYPE_BIPOLAR
#endif
U16 ADC_value = 0; // value of last ADC measurement
/**
* Send one byte through UART
* @param byte - data to send
*/
void UART_send_byte(U8 byte){
while(!(UART2_SR & UART_SR_TXE)); // wait until previous byte transmitted
UART2_DR = byte;
}
void uart_write(char *str){
while(*str){
while(!(UART2_SR & UART_SR_TXE));
UART2_CR2 |= UART_CR2_TEN;
UART2_DR = *str++;
}
}
/**
* Read one byte from Rx buffer
* @param byte - where to store readed data
* @return 1 in case of non-empty buffer
*/
U8 UART_read_byte(U8 *byte){
if(UART_rx_start_i == UART_rx_cur_i) // buffer is empty
return 0;
*byte = UART_rx[UART_rx_start_i++];
check_UART_pointer(UART_rx_start_i);
return 1;
}
void printUint(U8 *val, U8 len){
unsigned long Number = 0;
U8 i = len;
char ch;
U8 decimal_buff[12]; // max len of U32 == 10 + \n + \0
if(len > 4 || len == 3 || len == 0) return;
for(i = 0; i < 12; i++)
decimal_buff[i] = 0;
decimal_buff[10] = '\n';
ch = 9;
switch(len){
case 1:
Number = *((U8*)val);
break;
case 2:
Number = *((U16*)val);
break;
case 4:
Number = *((unsigned long*)val);
break;
}
do{
i = Number % 10L;
decimal_buff[ch--] = i + '0';
Number /= 10L;
}while(Number && ch > -1);
uart_write((char*)&decimal_buff[ch+1]);
}
U8 readInt(int *val){
unsigned long T = Global_time;
unsigned long R = 0;
int readed;
U8 sign = 0, rb, ret = 0, bad = 0;
do{
if(!UART_read_byte(&rb)) continue;
if(rb == '-' && R == 0){ // negative number
sign = 1;
continue;
}
if(rb < '0' || rb > '9') break; // number ends with any non-digit symbol that will be omitted
ret = 1; // there's at least one digit
R = R * 10L + rb - '0';
if(R > 0x7fff){ // bad value
R = 0;
bad = 0;
}
}while(Global_time - T < 10000); // wait no longer than 10s
if(bad || !ret) return 0;
readed = (int) R;
if(sign) readed *= -1;
*val = readed;
return 1;
}
void error_msg(char *msg){
uart_write("\nERROR: ");
uart_write(msg);
UART_send_byte('\n');
}
int main() {
unsigned long T = 0L;
int Ival;
U8 rb, v;
CFG_GCR |= 1; // disable SWIM
// Configure clocking
CLK_CKDIVR = 0; // F_HSI = 16MHz, f_CPU = 16MHz
// Timer 4 (8 bit) used as system tick timer
// prescaler == 128 (2^7), Tfreq = 125kHz
// period = 1ms, so ARR = 125
TIM4_PSCR = 7;
TIM4_ARR = 125;
// interrupts: update
TIM4_IER = TIM_IER_UIE;
// auto-reload + interrupt on overflow + enable
TIM4_CR1 = TIM_CR1_APRE | TIM_CR1_URS | TIM_CR1_CEN;
// Timer1 is PWM generator for drill motor: 1MHz -> 10kHz PWM from 0 to 100
TIM1_PSCRH = 0; // this timer have 16 bit prescaler
TIM1_PSCRL = 3; // LSB should be written last as it updates prescaler
// PWM frequency is 10kHz: 1000/10 = 100
TIM1_ARRH = 0;
TIM1_ARRL = 100;
TIM1_CCR1H = 0; TIM1_CCR1L = 10; // default: 10%
// channel 1 generates PWM pulses
TIM1_CCMR1 = 0x60; // OC1M = 110b - PWM mode 1 ( 1 -> 0)
//TIM1_CCMR1 = 0x70; // OC1M = 111b - PWM mode 2 ( 0 -> 1)
TIM1_CCER1 = 1; // Channel 1 is on. Active is high
//TIM1_CCER1 = 3; // Channel 1 is on. Active is low
// interrupts: none for timer 1
TIM1_IER = 0;
// auto-reload + interrupt on overflow + enable
TIM1_CR1 = TIM_CR1_APRE | TIM_CR1_URS | TIM_CR1_CEN;
// configure ADC
// select PF4 - Sence (AIN12) & enable interrupt for EOC
ADC_CSR = 0x2c; // EOCIE = 1; CH[3:0] = 0x0c (12)
ADC_TDRH = 0x10;// disable Schmitt triger for AIN12
// right alignment
ADC_CR2 = 0x08; // don't forget: first read ADC_DRL!
// f_{ADC} = f/18 & continuous non-buffered conversion & wake it up
ADC_CR1 = 0x73;
ADC_CR1 = 0x73; // turn on ADC (this needs second write operation)
// Configure pins
// EXTI
EXTI_CR1 = 0x30; // PCIS[1:0] = 11b -> rising/falling
PC_CR1 = 0x1c; // PC2, PC3 and PC4 are switches with pull-up
PC_CR2 = 0x1c; // enable interrupts
// other
PC_DDR |= GPIO_PIN1; // setup timer's output
DRILL_OFF(); // set PC1 to zero - power off motor
// PC2 - PP output (on-board LED)
PORT(LED_PORT, DDR) |= LED_PIN;
PORT(LED_PORT, CR1) |= LED_PIN;
// PD5 - UART2_TX
PORT(UART_PORT, DDR) |= UART_TX_PIN;
PORT(UART_PORT, CR1) |= UART_TX_PIN;
// Configure UART
// 8 bit, no parity, 1 stop (UART_CR1/3 = 0 - reset value)
// 57600 on 16MHz: BRR1=0x11, BRR2=0x06
UART2_BRR1 = 0x11; UART2_BRR2 = 0x06;
UART2_CR2 = UART_CR2_TEN | UART_CR2_REN | UART_CR2_RIEN; // Allow RX/TX, generate ints on rx
// enable all interrupts
enableInterrupts();
set_stepper_speed(1000);
setup_stepper_pins();
// Loop
do{
if((Global_time - T > paused_val) || (T > Global_time)){
U8 i;
T = Global_time;
PORT(LED_PORT, ODR) ^= LED_PIN; // blink on-board LED
//ADC_value = 0;
//for(i = 0; i < 10; i++) ADC_value += ADC_values[i];
//ADC_value /= 10;
printUint((U8*)&ADC_value, 2); // & print out ADC value
}
if(UART_read_byte(&rb)){ // buffer isn't empty
switch(rb){
case 'h': // help
case 'H':
uart_write("\nPROTO:\n+/-\tLED period\nS/s\tset/get Mspeed\n"
"m\tget steps\nx\tstop\np\tpause/resume\nM\tmove motor\na\tadd Nstps\n"
"0\tturn drill OFF\n1\tturn drill ON\n"
">\trotate faster\n<\trotate slower\n"
"u\ttray up\nd\ttray down\n"
"c\tauto speed off\nz\tauto speed on\n"
"g\tget speed\n");
break;
case '+':
paused_val += 100;
if(paused_val > 10000)
paused_val = 500; // but not more than 10s
break;
case '-':
paused_val -= 100;
if(paused_val < 100) // but not less than 0.1s
paused_val = 100;
break;
case 'S': // set stepper speed
if(readInt(&Ival) && Ival > MIN_STEP_LENGTH)
set_stepper_speed(Ival);
else
error_msg("bad speed");
break;
case 's': // get stepper speed
printUint((U8*)&Stepper_speed, 2);
break;
case 'm': // how much steps there is to the end of moving
printUint((U8*)&Nsteps, 4);
break;
case 'M': // move motor
if(Nsteps){
error_msg("moving!");
break;
}
if(readInt(&Ival) && Ival)
move_motor(Ival);
else{
error_msg("bad Nsteps");
}
break;
case 'x': // stop
stop_motor();
break;
case 'p': // pause/resume
pause_resume();
break;
case 'a': // add N steps
if(readInt(&Ival) && Ival){
add_steps(Ival);
}else{
error_msg("bad value");
}
break;
case '0': // turn off drill
DRILL_OFF();
break;
case '1': // turn on drill
DRILL_ON();
break;
case '>': // faster
DRILL_FASTER();
break;
case '<': // slower
DRILL_SLOWER();
break;
case 'u':
TRAY_UP();
break;
case 'd':
TRAY_DOWN();
break;
case 'c':
auto_speed = 0;
break;
case 'z':
auto_speed = 1;
break;
case 'g':
v = TIM1_CCR1L;
printUint(&v, 1);
break;
}
}
}while(1);
}