/* * blinky.c * * Copyright 2014 Edward V. Emelianoff * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301, USA. */ #include "ports_definition.h" #include "interrupts.h" #include "main.h" #include "stepper.h" /* * 0 0000 * 1 0001 * 2 0010 * 3 0011 * 4 0100 * 5 0101 * 6 0110 * 7 0111 * 8 1000 * 9 1001 * a 1010 * b 1011 * c 1100 * d 1101 * e 1110 * f 1111 */ unsigned long Global_time = 0L; // global time in ms U16 paused_val = 500; // interval between LED flashing U8 UART_rx[UART_BUF_LEN]; // cycle buffer for received data U8 UART_rx_start_i = 0; // started index of received data (from which reading starts) U8 UART_rx_cur_i = 0; // index of current first byte in rx array (to which data will be written) /** * Send one byte through UART * @param byte - data to send */ void UART_send_byte(U8 byte){ while(!(UART2_SR & UART_SR_TXE)); // wait until previous byte transmitted UART2_DR = byte; } void uart_write(char *str){ while(*str){ while(!(UART2_SR & UART_SR_TXE)); //UART2_CR2 |= UART_CR2_TEN; UART2_DR = *str++; } } /** * Read one byte from Rx buffer * @param byte - where to store readed data * @return 1 in case of non-empty buffer */ U8 UART_read_byte(U8 *byte){ if(UART_rx_start_i == UART_rx_cur_i) // buffer is empty return 0; *byte = UART_rx[UART_rx_start_i++]; check_UART_pointer(UART_rx_start_i); return 1; } void printUint(U8 *val, U8 len){ unsigned long Number = 0; U8 i = len; char ch; U8 decimal_buff[12]; // max len of U32 == 10 + \n + \0 if(len > 4 || len == 3 || len == 0) return; for(i = 0; i < 12; i++) decimal_buff[i] = 0; decimal_buff[10] = '\n'; ch = 9; switch(len){ case 1: Number = *((U8*)val); break; case 2: Number = *((U16*)val); break; case 4: Number = *((unsigned long*)val); break; } do{ i = Number % 10L; decimal_buff[ch--] = i + '0'; Number /= 10L; }while(Number && ch > -1); uart_write((char*)&decimal_buff[ch+1]); } U8 readInt(int *val){ unsigned long T = Global_time; unsigned long R = 0; int readed; U8 sign = 0, rb, ret = 0, bad = 0; do{ if(!UART_read_byte(&rb)) continue; if(rb == '-' && R == 0){ // negative number sign = 1; continue; } if(rb < '0' || rb > '9') break; // number ends with any non-digit symbol that will be omitted ret = 1; // there's at least one digit R = R * 10L + rb - '0'; if(R > 0x7fff){ // bad value R = 0; bad = 0; } }while(Global_time - T < 10000); // wait no longer than 10s if(bad || !ret) return 0; readed = (int) R; if(sign) readed *= -1; *val = readed; return 1; } void error_msg(char *msg){ uart_write("\nERROR: "); uart_write(msg); UART_send_byte('\n'); } /** * read motor number * @param N - readed Number * @return 0 in case of error */ U8 get_motor_number(U8 *N){ int Ival; if(readInt(&Ival) && Ival > -1 && Ival < 4){ *N = (U8) Ival; UART_send_byte('*'); // OK return 1; }else{ error_msg("bad motor"); return 0; } } int main() { unsigned long T = 0L; int Ival; U8 rb, Num; CFG_GCR |= 1; // disable SWIM // Configure clocking CLK_CKDIVR = 0; // F_HSI = 16MHz, f_CPU = 16MHz // Timer 4 (8 bit) used as system tick timer // prescaler == 128 (2^7), Tfreq = 125kHz // period = 1ms, so ARR = 125 TIM4_PSCR = 7; TIM4_ARR = 125; // interrupts: update TIM4_IER = TIM_IER_UIE; // auto-reload + interrupt on overflow + enable TIM4_CR1 = TIM_CR1_APRE | TIM_CR1_URS | TIM_CR1_CEN; // Configure pins // PC2 - PP output (on-board LED) PORT(LED_PORT, DDR) |= LED_PIN; PORT(LED_PORT, CR1) |= LED_PIN; // PD5 - UART2_TX PORT(UART_PORT, DDR) |= UART_TX_PIN; PORT(UART_PORT, CR1) |= UART_TX_PIN; // Configure UART // 8 bit, no parity, 1 stop (UART_CR1/3 = 0 - reset value) // 57600 on 16MHz: BRR1=0x11, BRR2=0x06 UART2_BRR1 = 0x11; UART2_BRR2 = 0x06; UART2_CR2 = UART_CR2_TEN | UART_CR2_REN | UART_CR2_RIEN; // Allow RX/TX, generate ints on rx // enable all interrupts enableInterrupts(); setup_stepper_pins(); // Loop do{ if((Global_time - T > paused_val) || (T > Global_time)){ T = Global_time; PORT(LED_PORT, ODR) ^= LED_PIN; // blink on-board LED } if(UART_read_byte(&rb)){ // buffer isn't empty switch(rb){ case 'h': // help case 'H': uart_write("\nPROTO:\n+/-\tLED period\nSx/sx\tset/get Mspeed\nmx\tget steps\nXx\tstop\nPx\tpause/resume\n0..3\tmove xth motor\n"); break; case '+': paused_val += 100; if(paused_val > 10000) paused_val = 500; // but not more than 10s break; case '-': paused_val -= 100; if(paused_val < 100) // but not less than 0.1s paused_val = 500; break; case 'S': // set stepper speed if(get_motor_number(&Num)){ if(readInt(&Ival) && Ival > MIN_STEP_LENGTH) set_stepper_speed(Num, Ival); else error_msg("bad speed"); } break; case 's': // get stepper speed if(get_motor_number(&Num)) printUint((U8*)&Stepper_speed[Num], 2); break; case 'm': // how much steps there is to the end of moving if(get_motor_number(&Num)) printUint((U8*)&Nsteps[Num], 2); break; case 'X': // stop if(get_motor_number(&Num)) stop_motor(Num); break; case 'P': // pause/resume if(get_motor_number(&Num)) pause_resume(Num); break; default: if(rb >= '0' && rb <= '2'){ // run motor Num = rb - '0'; if(readInt(&Ival) && Ival) move_motor(Num, Ival); else{ error_msg("bad Nsteps"); } } } } }while(1); }