IR-controller/with_opencm3/hardware_ini.c
2015-02-03 18:16:28 +03:00

505 lines
18 KiB
C

/*
* hardware_ini.c - functions for HW initialisation
*
* Copyright 2014 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
/*
* All hardware-dependent initialisation & definition should be placed here
* and in hardware_ini.h
*
*/
#include "main.h"
#include "hardware_ini.h"
#include "onewire.h"
#define ADC_CHANNELS_NUMBER 10
/*
* Due to inconvenient pins position on STM32F103VxT6 I had to make this strange location:
* my channel # -> ADC1/2 channel #
* 0 -> 9 PB1
* 1 -> 8 PB0
* 2 -> 15 PC5
* 3 -> 14 PC4
* 4 -> 7 PA7
* 5 -> 6 PA6
* 6 -> 5 PA5
* 7 -> 4 PA4
* U36 -> 1 PA1
* U10 -> 0 PA0
*/
uint8_t adc_channel_array[16] = {9,8,15,14,7,6,5,4,1,0};
volatile uint16_t ADC_value[ADC_CHANNELS_NUMBER]; // ADC DMA value
/*
* Configure SPI ports
*/
/*
* SPI1 remapped:
* SCK - PB3
* MISO - PB4
* MOSI - PB5
*/
void SPI1_init(){
// enable AFIO & other clocking
rcc_peripheral_enable_clock(&RCC_APB2ENR,
RCC_APB2ENR_SPI1EN | RCC_APB2ENR_AFIOEN | RCC_APB2ENR_IOPBEN);
// remap SPI1 (change pins from PA5..7 to PB3..5); also turn off JTAG
gpio_primary_remap(AFIO_MAPR_SWJ_CFG_JTAG_OFF_SW_OFF, AFIO_MAPR_SPI1_REMAP);
// SCK, MOSI - push-pull output
gpio_set_mode(GPIO_BANK_SPI1_RE_SCK, GPIO_MODE_OUTPUT_50_MHZ,
GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO_SPI1_RE_SCK);
gpio_set_mode(GPIO_BANK_SPI1_RE_MOSI, GPIO_MODE_OUTPUT_50_MHZ,
GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO_SPI1_RE_MOSI);
// MISO - opendrain in
gpio_set_mode(GPIO_BANK_SPI1_RE_MISO, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO_SPI1_RE_MISO);
spi_reset(SPI1);
/* Set up SPI in Master mode with:
* Clock baud rate: 1/128 of peripheral clock frequency (APB2, 72MHz)
* Clock polarity: Idle High
* Clock phase: Data valid on 2nd clock pulse
* Data frame format: 8-bit
* Frame format: MSB First
*/
spi_init_master(SPI1, SPI_CR1_BAUDRATE_FPCLK_DIV_128, SPI_CR1_CPOL_CLK_TO_1_WHEN_IDLE,
SPI_CR1_CPHA_CLK_TRANSITION_2, SPI_CR1_DFF_8BIT, SPI_CR1_MSBFIRST);
nvic_enable_irq(NVIC_SPI1_IRQ); // enable SPI interrupt
}
/*
* SPI2:
* SCK - PB13
* MISO - PB14
* MOSI - PB15
*/
void SPI2_init(){
// turn on clocking
//rcc_periph_clock_enable(RCC_SPI2 | RCC_GPIOB);
rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_SPI2EN);
rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_AFIOEN | RCC_APB2ENR_IOPBEN);
// SCK, MOSI - push-pull output
gpio_set_mode(GPIO_BANK_SPI2_SCK, GPIO_MODE_OUTPUT_50_MHZ,
GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO_SPI2_SCK);
gpio_set_mode(GPIO_BANK_SPI2_MOSI, GPIO_MODE_OUTPUT_50_MHZ,
GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO_SPI2_MOSI);
// MISO - opendrain in
gpio_set_mode(GPIO_BANK_SPI2_MISO, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO_SPI2_MISO);
spi_reset(SPI2);
/* Set up SPI in Master mode with:
* Clock baud rate: 1/64 of peripheral clock frequency (APB1, 36MHz)
* Clock polarity: Idle High
* Clock phase: Data valid on 2nd clock pulse
* Data frame format: 8-bit
* Frame format: MSB First
*/
spi_init_master(SPI2, SPI_CR1_BAUDRATE_FPCLK_DIV_64, SPI_CR1_CPOL_CLK_TO_1_WHEN_IDLE,
SPI_CR1_CPHA_CLK_TRANSITION_2, SPI_CR1_DFF_8BIT, SPI_CR1_MSBFIRST);
nvic_enable_irq(NVIC_SPI2_IRQ); // enable SPI interrupt
}
/**
* GPIO initialisaion: clocking + pins setup
*/
void GPIO_init(){
/* rcc_periph_clock_enable(RCC_AFIO);
rcc_periph_clock_enable(RCC_SPI1);
rcc_periph_clock_enable(RCC_GPIOC);*/
rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_IOPAEN |
RCC_APB2ENR_IOPBEN | RCC_APB2ENR_IOPCEN | RCC_APB2ENR_IOPDEN |
RCC_APB2ENR_IOPEEN);
// USB_DISC: push-pull
gpio_set_mode(USB_DISC_PORT, GPIO_MODE_OUTPUT_2_MHZ,
GPIO_CNF_OUTPUT_PUSHPULL, USB_DISC_PIN);
// USB_POWER: open drain, externall pull down with R7 (22k)
gpio_set_mode(USB_POWER_PORT, GPIO_MODE_INPUT,
GPIO_CNF_INPUT_FLOAT, USB_POWER_PIN);
// AD7794 addr + en
gpio_set_mode(ADC_ADDR_PORT, GPIO_MODE_OUTPUT_2_MHZ,
GPIO_CNF_OUTPUT_PUSHPULL, ADC_ADDR_MASK | ADC_EN_PIN); // ADDRESS: PD10..12; EN: PD13
gpio_clear(ADC_ADDR_PORT, ADC_ADDR_MASK | ADC_EN_PIN); // clear address & turn switch off
}
/*
* SysTick used for system timer with period of 1ms
*/
void SysTick_init(){
systick_set_clocksource(STK_CSR_CLKSOURCE_AHB_DIV8); // Systyck: 72/8=9MHz
systick_set_reload(8999); // 9000 pulses: 1kHz
systick_interrupt_enable();
systick_counter_enable();
}
/**
* Turn on ADC DMA for filling temperatures buffer
*/
void adc_dma_on(){
// first configure DMA1 Channel1 (ADC1)
nvic_disable_irq(NVIC_DMA1_CHANNEL1_IRQ);
dma_channel_reset(DMA1, DMA_CHANNEL1);
DMA1_CPAR1 = (uint32_t) &(ADC_DR(ADC1));
DMA1_CMAR1 = (uint32_t) ADC_value;
DMA1_CNDTR1 = ADC_CHANNELS_NUMBER;
DMA1_CCR1 = DMA_CCR_MINC | DMA_CCR_PSIZE_16BIT | DMA_CCR_MSIZE_16BIT
| DMA_CCR_CIRC | DMA_CCR_PL_HIGH | DMA_CCR_EN;
adc_enable_dma(ADC1);
adc_power_on(ADC1);
/*
dma_set_peripheral_address(DMA1, DMA_CHANNEL1, (uint32_t) &(ADC_DR(ADC1)));
dma_set_memory_address(DMA1, DMA_CHANNEL1, (uint32_t) ADC_value);
dma_set_number_of_data(DMA1, DMA_CHANNEL1, ADC_CHANNELS_NUMBER);
dma_set_read_from_peripheral(DMA1, DMA_CHANNEL1);
dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL1);
dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL1);
dma_set_peripheral_size(DMA1, DMA_CHANNEL1, DMA_CCR_PSIZE_16BIT);
dma_set_memory_size(DMA1, DMA_CHANNEL1, DMA_CCR_MSIZE_16BIT);
dma_enable_circular_mode(DMA1, DMA_CHANNEL1);
dma_set_priority(DMA1, DMA_CHANNEL1, DMA_CCR_PL_HIGH);
dma_disable_transfer_error_interrupt(DMA1, DMA_CHANNEL1);
dma_disable_transfer_complete_interrupt(DMA1, DMA_CHANNEL1);
dma_enable_channel(DMA1, DMA_CHANNEL1);
*/
}
void ADC_init(){
rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_ADC1EN); // enable clocking
rcc_periph_clock_enable(RCC_ADC1);
rcc_set_adcpre(RCC_CFGR_ADCPRE_PCLK2_DIV4);
rcc_periph_clock_enable(RCC_GPIOA | RCC_GPIOB | RCC_GPIOC); // clocking for ADC ports
// channels 4-7: PA7-PA4 (ADC IN 4..7); U10 (PA0); U36 (PA1)
gpio_set_mode(GPIOA, GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, GPIO4|GPIO5|GPIO6|GPIO7|GPIO1|GPIO0);
// channels 0,1: PB1, PB0 (ADC IN 8, 9)
gpio_set_mode(GPIOB, GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, GPIO0|GPIO1);
// channels 2,3: PC5, PC4 (ADC IN14, 15)
gpio_set_mode(GPIOC, GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, GPIO4|GPIO5);
// Make sure the ADC doesn't run during config
adc_off(ADC1);
rcc_periph_clock_enable(RCC_DMA1);
// Configure ADC as continuous scan mode with DMA
adc_set_dual_mode(ADC_CR1_DUALMOD_IND); // ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
adc_enable_scan_mode(ADC1); // ADC_InitStructure.ADC_ScanConvMode = ENABLE;
adc_set_continuous_conversion_mode(ADC1); // ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
adc_disable_external_trigger_regular(ADC1); // ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
adc_set_right_aligned(ADC1); // ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
adc_set_sample_time_on_all_channels(ADC1, ADC_SMPR_SMP_239DOT5CYC); // ADC_SampleTime_239Cycles5
//adc_set_sample_time(ADC1, ADC_CHANNEL8, ADC_SMPR_SMP_239DOT5CYC); // ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 1, ADC_SampleTime_239Cycles5);
adc_dma_on();
}
/**
* Starts ADC calibration & after it runs ADC in continuous conversion mode
* First call ADC_init(), than wait a little and call this function
*/
void ADC_calibrate_and_start(){
adc_set_regular_sequence(ADC1, ADC_CHANNELS_NUMBER, adc_channel_array);
adc_reset_calibration(ADC1);
adc_calibration(ADC1);
adc_start_conversion_regular(ADC1); // ADC_SoftwareStartConvCmd(ADC1, ENABLE);
adc_start_conversion_direct(ADC1);
}
/**
* get shutter voltage in value of U*100
* 3.3V == 4096 ADU, 36V comes to ADC in through resistor divider 4.7k:56k, so
* U36(V/100) = Uadc(ADU) * 607/47 * 33/40960 * 100 = Uadc(ADU) * 20031 / 19251
* ==> approximately this is equal to val*26/25 or val + val/25
*/
int shutter_voltage(){
int val = SHUTTER_SENSE_VALUE;
val += val/25;
return val;
}
/**
* get power voltage in value of U*100
* 3.3V == 4096 ADU, 10..12V comes to ADC in through resistor divider 4.7k:12k, so
* U10(V/100) = Uadc(ADU) * 167/47 * 33/40960 * 100 = Uadc(ADU) * 5511 / 19251
* ==> approximately this is equal to val*2/7
*/
int power_voltage(){
int val = POWER_SENSE_VALUE * 2;
val /= 7;
return val;
}
/**
* Resistance of TRD
* @param num - number of sensor
* @return R*100
* we measure
*/
int TRD_value(uint8_t num){
uint32_t v = ADC_value[num];
uint32_t r = 100000 * v;
r /= (uint32_t)(4096 - v);
return (int) r;
}
uint16_t tim2_buff[TIM2_DMABUFF_SIZE];
uint16_t tim2_inbuff[TIM2_DMABUFF_SIZE];
int tum2buff_ctr = 0;
uint8_t ow_done = 1;
/**
* this function sends bits of ow_byte (LSB first) to 1-wire line
* @param ow_byte - byte to convert
* @param Nbits - number of bits to send
* @param ini - 1 to zero counter
*/
uint8_t OW_add_byte(_U_ uint8_t ow_byte, _U_ uint8_t Nbits, _U_ uint8_t ini){
uint8_t i, byte;
if(ini) tum2buff_ctr = 0;
if(Nbits == 0) return 0;
if(Nbits > 8) Nbits = 8;
for(i = 0; i < Nbits; i++){
if(ow_byte & 0x01){
byte = OW_1;
}else{
byte = OW_0;
}
tim2_buff[tum2buff_ctr++] = byte;
if(tum2buff_ctr == TIM2_DMABUFF_SIZE) return 0; // avoid buffer overflow
ow_byte = ow_byte >> 1;
}
// print_int(tum2buff_ctr, lastsendfun);
// MSG(" bytes in send buffer\n");
return 1;
}
/**
* Adds Nbytes bytes 0xff for reading sequence
*/
uint8_t OW_add_read_seq(uint8_t Nbytes){
uint8_t i;
if(Nbytes == 0) return 0;
Nbytes *= 8; // 8 bits for each byte
for(i = 0; i < Nbytes; i++){
tim2_buff[tum2buff_ctr++] = 1;
if(tum2buff_ctr == TIM2_DMABUFF_SIZE) return 0;
}
#ifdef EBUG
print_int(tum2buff_ctr, lastsendfun);
MSG(" bytes in send buffer\n");
#endif
return 1;
}
/**
* Fill output buffer with data from 1-wire
* @param start_idx - index from which to start (bit number)
* @param N - data length (in **bytes**)
* @outbuf - where to place data
*/
void read_from_OWbuf(_U_ uint8_t start_idx, _U_ uint8_t N, _U_ uint8_t *outbuf){
uint8_t i, j, last = start_idx + N * 8, byte;
if(last >= TIM2_DMABUFF_SIZE) last = TIM2_DMABUFF_SIZE;
for(i = start_idx; i < last;){
byte = 0;
for(j = 0; j < 8; j++){
byte >>= 1;
#ifdef EBUG
print_int(tim2_inbuff[i], lastsendfun);
MSG(" ");
#endif
if(tim2_inbuff[i++] < OW_READ1)
byte |= 0x80;
}
*outbuf++ = byte;
#ifdef EBUG
MSG("readed \n");
#endif
}
}
// there's a mistake in opencm3, so redefine this if needed (TIM_CCMR2_CC3S_IN_TI1 -> TIM_CCMR2_CC3S_IN_TI4)
#ifndef TIM_CCMR2_CC3S_IN_TI4
#define TIM_CCMR2_CC3S_IN_TI4 (2)
#endif
void init_ow_dmatimer(){ // tim2_ch4 - PA3, no remap
gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ,
GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN, GPIO3);
rcc_periph_clock_enable(RCC_TIM2);
rcc_periph_clock_enable(RCC_DMA1);
timer_reset(TIM2);
// timers have frequency of 1MHz -- 1us for one step
// 36MHz of APB1
timer_set_mode(TIM2, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
// 72MHz div 72 = 1MHz
TIM2_PSC = 71; // prescaler is (div - 1)
TIM2_CR1 &= ~(TIM_CR1_OPM | TIM_CR1_UDIS); // continuous mode & enable update events
TIM2_CR1 |= TIM_CR1_ARPE; // changing period immediately
TIM2_ARR = OW_BIT; // default period of timer
// PWM_OUT: TIM2_CH4; capture: TIM2_CH3
// PWM edge-aligned mode & enable preload for CCR4, CC3 takes input from TI4
TIM2_CCMR2 = TIM_CCMR2_OC4M_PWM1 | TIM_CCMR2_OC4PE | TIM_CCMR2_CC3S_IN_TI4;
TIM2_CCR4 = 0; // set output value to 1 by clearing CCR4
TIM2_EGR = TIM_EGR_UG; // update values of ARR & CCR4
// set low polarity for CC4, high for CC4 & enable CC4 out and CC3 in
TIM2_CCER = TIM_CCER_CC4P | TIM_CCER_CC4E | TIM_CCER_CC3E;
// TIM2_CH4 - DMA1, channel 7
dma_channel_reset(DMA1, DMA_CHANNEL7);
DMA1_CCR7 = DMA_CCR_DIR | DMA_CCR_MINC | DMA_CCR_PSIZE_16BIT | DMA_CCR_MSIZE_16BIT
| DMA_CCR_TEIE | DMA_CCR_TCIE | DMA_CCR_PL_HIGH;
/*
DMA1_CCR7 |= DMA_CCR_DIR; // dma_set_read_from_memory(DMA1, DMA_CHANNEL7);
DMA1_CCR7 |= DMA_CCR_MINC; // dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL7);
//dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL7);
DMA1_CCR7 |= DMA_CCR_PSIZE_16BIT; // dma_set_peripheral_size(DMA1, DMA_CHANNEL7, DMA_CCR_PSIZE_16BIT);
DMA1_CCR7 |= DMA_CCR_MSIZE_16BIT; // dma_set_memory_size(DMA1, DMA_CHANNEL7, DMA_CCR_MSIZE_16BIT);
DMA1_CCR7 |= DMA_CCR_TEIE; // dma_enable_transfer_error_interrupt(DMA1, DMA_CHANNEL7);
DMA1_CCR7 |= DMA_CCR_TCIE; // dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL7);
*/
nvic_enable_irq(NVIC_DMA1_CHANNEL7_IRQ); // enable dma1_channel7_isr
}
void run_dmatimer(){
ow_done = 0;
adc_disable_dma(ADC1); // turn off DMA & ADC
adc_off(ADC1);
DMA1_IFCR = DMA_ISR_TEIF7|DMA_ISR_HTIF7|DMA_ISR_TCIF7|DMA_ISR_GIF7 |
DMA_ISR_TEIF1|DMA_ISR_HTIF1|DMA_ISR_TCIF1|DMA_ISR_GIF1; // clear flags
//init_ow_dmatimer();
/*
// TIM2_CH4 - DMA1, channel 7
dma_channel_reset(DMA1, DMA_CHANNEL7);
dma_set_read_from_memory(DMA1, DMA_CHANNEL7);
dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL7);
dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL7);
dma_set_peripheral_size(DMA1, DMA_CHANNEL7, DMA_CCR_PSIZE_16BIT);
dma_set_memory_size(DMA1, DMA_CHANNEL7, DMA_CCR_MSIZE_16BIT);
dma_enable_transfer_error_interrupt(DMA1, DMA_CHANNEL7);
dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL7);
*/
DMA1_CCR7 &= ~DMA_CCR_EN; // disable (what if it's enabled?) to set address
DMA1_CPAR7 = (uint32_t) &(TIM_CCR4(TIM2)); // dma_set_peripheral_address(DMA1, DMA_CHANNEL7, (uint32_t) &(TIM_CCR4(TIM2)));
DMA1_CMAR7 = (uint32_t) tim2_buff; // dma_set_memory_address(DMA1, DMA_CHANNEL7, (uint32_t)tim2_buff);
DMA1_CNDTR7 = tum2buff_ctr;//dma_set_number_of_data(DMA1, DMA_CHANNEL7, tum2buff_ctr);
// TIM2_CH4 - DMA1, channel 7
dma_channel_reset(DMA1, DMA_CHANNEL1);
DMA1_CCR1 = DMA_CCR_MINC | DMA_CCR_PSIZE_16BIT | DMA_CCR_MSIZE_16BIT
| DMA_CCR_TEIE | DMA_CCR_TCIE | DMA_CCR_PL_HIGH;
/*
dma_set_read_from_peripheral(DMA1, DMA_CHANNEL1);
dma_enable_memory_increment_mode(DMA1, DMA_CHANNEL1);
dma_disable_peripheral_increment_mode(DMA1, DMA_CHANNEL1);
dma_set_peripheral_size(DMA1, DMA_CHANNEL1, DMA_CCR_PSIZE_16BIT);
dma_set_memory_size(DMA1, DMA_CHANNEL1, DMA_CCR_MSIZE_16BIT);
dma_enable_transfer_error_interrupt(DMA1, DMA_CHANNEL1);
dma_enable_transfer_complete_interrupt(DMA1, DMA_CHANNEL1);
*/
DMA1_CPAR1 = (uint32_t) &(TIM_CCR3(TIM2)); //dma_set_peripheral_address(DMA1, DMA_CHANNEL1, (uint32_t) &(TIM_CCR3(TIM2)));
DMA1_CMAR1 = (uint32_t) tim2_inbuff; //dma_set_memory_address(DMA1, DMA_CHANNEL1, (uint32_t) tim2_inbuff);
DMA1_CNDTR1 = tum2buff_ctr; //dma_set_number_of_data(DMA1, DMA_CHANNEL1, tum2buff_ctr);
nvic_enable_irq(NVIC_DMA1_CHANNEL1_IRQ);
DMA1_CCR7 |= DMA_CCR_EN; //dma_enable_channel(DMA1, DMA_CHANNEL7);
DMA1_CCR1 |= DMA_CCR_EN; //dma_enable_channel(DMA1, DMA_CHANNEL1);
TIM2_SR = 0; // clear all flags
TIM2_CR1 &= ~TIM_CR1_OPM; // continuous mode
TIM2_ARR = OW_BIT; // bit length
TIM2_EGR = TIM_EGR_UG; // update value of ARR
TIM2_CR2 &= ~TIM_CR2_CCDS; // timer_set_dma_on_compare_event(TIM2);
TIM2_CCER |= TIM_CCER_CC3E; // enable input capture
TIM2_DIER = TIM_DIER_CC4DE | TIM_DIER_CC3DE; // enable DMA events
// set low polarity, enable cc out & enable input capture
TIM2_CCER |= TIM_CCER_CC4P | TIM_CCER_CC4E | TIM_CCER_CC3E;
TIM2_CR1 |= TIM_CR1_CEN; // run timer
}
uint16_t rstat = 0, lastcc3;
void ow_reset(){
ow_done = 0;
rstat = 0;
TIM2_SR = 0; // clear all flags
TIM2_DIER = 0; // disable timer interrupts
TIM2_ARR = OW_RESET_TIME; // set period to 1ms
TIM2_CCR4 = OW_RESET; // zero pulse length
TIM2_EGR = TIM_EGR_UG; // update values of ARR & CCR4
TIM2_CR1 |= TIM_CR1_OPM | TIM_CR1_CEN; // we need only single pulse & run timer
TIM2_SR = 0; // clear update flag generated after timer's running
TIM2_DIER = TIM_DIER_UIE | TIM_DIER_CC3IE; // generate interrupts on update event & cc
nvic_enable_irq(NVIC_TIM2_IRQ);
}
void tim2_isr(){
if(TIM2_SR & TIM_SR_UIF){ // update interrupt
TIM2_SR &= ~TIM_SR_UIF; // clear flag
TIM2_DIER = 0; // disable all timer interrupts
TIM2_CCR4 = 0; // set output value to 1
TIM2_EGR |= TIM_EGR_UG; // generate update event to change value in CCR4
TIM2_CR1 &= ~TIM_CR1_CEN; // timer_disable_counter(TIM2);
nvic_disable_irq(NVIC_TIM2_IRQ);
ow_done = 1;
rstat = lastcc3;
/* print_int(rstat, lastsendfun);
MSG("\n");*/
}
if(TIM2_SR & TIM_SR_CC3IF){ // we need this interrupt to store CCR3 value
TIM2_SR = 0; // clear flag (we've manage TIM_SR_UIF before, so can simply do =0)
lastcc3 = TIM2_CCR3;
//TIM2_DIER &= ~TIM_DIER_CC3IE; // disable CCR3 interrupts
}
}
void dma1_channel7_isr(){
if(DMA1_ISR & DMA_ISR_TCIF7){
DMA1_IFCR = DMA_IFCR_CTCIF7; // clear flag
DMA1_CCR7 &= ~DMA_CCR_EN; // disable DMA1 channel 7
//TIM2_DIER &= ~TIM_DIER_CC4DE;
}else if(DMA1_ISR & DMA_ISR_TEIF7){
DMA1_IFCR = DMA_IFCR_CTEIF7;
MSG("DMA out transfer error\n");
}
}
void dma1_channel1_isr(){
//int i;
if(DMA1_ISR & DMA_ISR_TCIF1) {
DMA1_IFCR = DMA_IFCR_CTCIF1;
TIM2_CR1 &= ~TIM_CR1_CEN; // timer_disable_counter(TIM2);
//TIM2_DIER &= ~TIM_DIER_CC3DE;
DMA1_CCR1 &= ~DMA_CCR_EN; // disable DMA1 channel 1
nvic_disable_irq(NVIC_DMA1_CHANNEL1_IRQ);
ow_done = 1;
/* for(i = 0; i < tum2buff_ctr; i++){
print_int(tim2_inbuff[i], lastsendfun);
MSG(" ");
}
MSG("\n");*/
}else if(DMA1_ISR & DMA_ISR_TEIF1){
DMA1_IFCR = DMA_IFCR_CTEIF1;
MSG("DMA in transfer error\n");
}
}
uint8_t OW_get_reset_status(){
/* print_int(rstat, lastsendfun);
MSG("\n");*/
if(rstat < OW_PRESENT) return 0; // no devices
return 1;
}