mirror of
https://github.com/eddyem/BTA_utils.git
synced 2025-12-06 02:35:13 +03:00
349 lines
10 KiB
C
349 lines
10 KiB
C
/*
|
|
* zernike.c
|
|
*
|
|
* Copyright 2016 Edward V. Emelianov <eddy@sao.ru, edward.emelianoff@gmail.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
* MA 02110-1301, USA.
|
|
*/
|
|
|
|
|
|
#define _GNU_SOURCE (1) // for math.h
|
|
#include <math.h>
|
|
#include <strings.h>
|
|
#include "zernike.h"
|
|
#include "usefull_macros.h"
|
|
|
|
#ifndef iabs
|
|
#define iabs(a) (((a)<(0)) ? (-a) : (a))
|
|
#endif
|
|
|
|
// coordinate step on a grid
|
|
static double coord_step = DEFAULT_CRD_STEP;
|
|
// default wavelength for wavefront (650nm) in meters
|
|
static double wavelength = DEFAULT_WAVELENGTH;
|
|
// default coefficient to transform vawefront from wavelengths into user value
|
|
static double wf_coeff = 1.;
|
|
// array of factorials 1..100
|
|
static double *FK = NULL;
|
|
// unit for WF measurement
|
|
static char *outpunit = DEFAULT_WF_UNIT;
|
|
|
|
/**
|
|
* Set default coordinate grid step on an unity circle
|
|
* @param step - new step
|
|
* @return 0 if all OK, -1 or 1 if `step` bad
|
|
*/
|
|
int z_set_step(double step){
|
|
printf("set to %g\n", step);
|
|
if(step < DBL_EPSILON) return -1;
|
|
if(step > 1.) return 1;
|
|
coord_step = step;
|
|
return 0;
|
|
}
|
|
|
|
double z_get_step(){
|
|
return coord_step;
|
|
}
|
|
|
|
/**
|
|
* Set value of default wavelength
|
|
* @param w - new wavelength (from 100nm to 10um) in meters, microns or nanometers
|
|
* @return 0 if all OK
|
|
*/
|
|
int z_set_wavelength(double w){
|
|
if(w > 1e-7 && w < 1e-5) // meters
|
|
wavelength = w;
|
|
else if(w > 0.1 && w < 10.) // micron
|
|
wavelength = w * 1e-6;
|
|
else if(w > 100. && w < 10000.) // nanometer
|
|
wavelength = w * 1e-9;
|
|
else return 1;
|
|
return 0;
|
|
}
|
|
|
|
double z_get_wavelength(){
|
|
return wavelength;
|
|
}
|
|
|
|
// for `const char * const *units` thanks to http://stackoverflow.com/a/3875555/1965803
|
|
typedef struct{
|
|
double wf_coeff; // multiplier for wavefront units (in .dat files coefficients are in meters)
|
|
const char * const *units; // symbol units' names
|
|
} wf_units;
|
|
|
|
wf_units wfunits[] = {
|
|
{ 1. , (const char * const []){"meter", "m", NULL}},
|
|
{1e3 , (const char * const []){"millimeter", "mm", NULL}},
|
|
{1e6 , (const char * const []){"micrometer", "um", "u", NULL}},
|
|
{1e9 , (const char * const []){"nanometer", "nm", "n", NULL}},
|
|
{-1. , (const char * const []){"wavelength", "wave", "lambda", "w", "l", NULL}},
|
|
{0. , (const char * const []){NULL}}
|
|
};
|
|
|
|
/**
|
|
* Set coefficient `wf_coeff` to user defined unit
|
|
*/
|
|
int z_set_wfunit(char *U){
|
|
wf_units *u = wfunits;
|
|
while(u->units[0]){
|
|
const char * const * unit = u->units;
|
|
while(*unit){
|
|
if(strcasecmp(*unit, U) == 0){
|
|
wf_coeff = u->wf_coeff;
|
|
if(wf_coeff < 0.){ // wavelengths
|
|
wf_coeff = 1./wavelength; // in wavelengths
|
|
}
|
|
outpunit = (char*)u->units[0];
|
|
printf("wf_coeff = %g\n", wf_coeff);
|
|
return 0;
|
|
}
|
|
++unit;
|
|
}
|
|
++u;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
double z_get_wfcoeff(){
|
|
return wf_coeff;
|
|
}
|
|
|
|
/**
|
|
* Print all wf_units available
|
|
*/
|
|
void z_print_wfunits(){
|
|
wf_units *u = wfunits;
|
|
printf(_("Unit (meters)\tAvailable values\n"));
|
|
do{
|
|
const char * const*unit = u->units;
|
|
double val = 1./u->wf_coeff;
|
|
if(val > 0.)
|
|
printf("%-8g\t", val);
|
|
else
|
|
printf("(wavelength)\t");
|
|
do{
|
|
printf("%s ", *unit);
|
|
}while(*(++unit));
|
|
printf("\n");
|
|
}while((++u)->units[0]);
|
|
printf("\n");
|
|
}
|
|
|
|
/**
|
|
* Convert polynomial order in Noll notation into n/m
|
|
* @param p (i) - order of Zernike polynomial in Noll notation
|
|
* @param N (o) - order of polynomial
|
|
* @param M (o) - angular parameter
|
|
*/
|
|
void convert_Zidx(int p, int *N, int *M){
|
|
int n = (int) floor((-1.+sqrt(1.+8.*p)) / 2.);
|
|
if(M) *M = (int)(2.0*(p - n*(n+1.)/2. - 0.5*(double)n));
|
|
if(N) *N = n;
|
|
}
|
|
|
|
/**
|
|
* Generate polar coordinates for grid [-1..1] by both coordinates
|
|
* with default step
|
|
* @param len (o) - size of array
|
|
* @return array of coordinates
|
|
*/
|
|
polar *gen_coords(int *len){
|
|
int WH = 1 + (int)(2. / coord_step), max_sz = WH * WH, L = 0;
|
|
polar *coordinates = malloc(max_sz * sizeof(polar)), *cptr = coordinates;
|
|
if(!cptr) return NULL;
|
|
double x, y;
|
|
for(y = -1.; y < 1.; y += coord_step){
|
|
for(x = -1.; x < 1.; x += coord_step){
|
|
double R = sqrt(x*x + y*y);
|
|
if(R > 1.) continue;
|
|
cptr->r = R;
|
|
cptr->theta = atan2(y, x);
|
|
++cptr;
|
|
++L;
|
|
}
|
|
}
|
|
printf("%d points outside circle (ratio = %g, ideal = %g)\n", max_sz - L, ((double)L)/max_sz, M_PI/4.);
|
|
if(len) *len = L;
|
|
return coordinates;
|
|
}
|
|
|
|
/**
|
|
* Build pre-computed array of factorials from 1 to 100
|
|
*/
|
|
void build_factorial(){
|
|
double F = 1.;
|
|
int i;
|
|
if(FK) return;
|
|
FK = MALLOC(double, ZERNIKE_MAX_POWER);
|
|
FK[0] = 1.;
|
|
for(i = 1; i < ZERNIKE_MAX_POWER; i++)
|
|
FK[i] = (F *= (double)i);
|
|
}
|
|
|
|
/**
|
|
* Validation check of zernfun parameters
|
|
* return 1 in case of error
|
|
*/
|
|
int check_parameters(int n, int m, int Sz, polar *P){
|
|
if(Sz < 3 || !P){
|
|
WARNX(_("Size of matrix must be > 2!"));
|
|
return 1;
|
|
}
|
|
if(n > ZERNIKE_MAX_POWER){
|
|
WARNX(_("Order of Zernike polynomial must be <= 100!"));
|
|
return 1;
|
|
}
|
|
int erparm = 0;
|
|
if(n < 0) erparm = 1;
|
|
if(n < iabs(m)) erparm = 1; // |m| must be <= n
|
|
if((n - m) % 2) erparm = 1; // n-m must differ by a prod of 2
|
|
if(erparm)
|
|
WARNX(_("Wrong parameters of Zernike polynomial (%d, %d)"), n, m);
|
|
else
|
|
if(!FK) build_factorial();
|
|
return erparm;
|
|
}
|
|
|
|
/**
|
|
* Build array with R powers (from 0 to n inclusive)
|
|
* @param n - power of Zernike polinomial (array size = n+1)
|
|
* @param Sz - size of P array
|
|
* @param P (i) - polar coordinates of points
|
|
*/
|
|
double **build_rpow(int n, int Sz, polar *P){
|
|
int i, j, N = n + 1;
|
|
double **Rpow = MALLOC(double*, N);
|
|
Rpow[0] = MALLOC(double, Sz);
|
|
for(i = 0; i < Sz; i++) Rpow[0][i] = 1.; // zero's power
|
|
for(i = 1; i < N; i++){ // Rpow - is quater I of cartesian coordinates ('cause other are fully simmetrical)
|
|
Rpow[i] = MALLOC(double, Sz);
|
|
double *rp = Rpow[i], *rpo = Rpow[i-1];
|
|
polar *p = P;
|
|
for(j = 0; j < Sz; j++, rp++, rpo++, p++){
|
|
*rp = (*rpo) * p->r;
|
|
}
|
|
}
|
|
return Rpow;
|
|
}
|
|
|
|
/**
|
|
* Free array of R powers with power n
|
|
* @param Rpow (i) - array to free
|
|
* @param n - power of Zernike polinomial for that array (array size = n+1)
|
|
*/
|
|
void free_rpow(double ***Rpow, int n){
|
|
int i, N = n+1;
|
|
for(i = 0; i < N; i++) FREE((*Rpow)[i]);
|
|
FREE(*Rpow);
|
|
}
|
|
|
|
/**
|
|
* Zernike function for scattering data
|
|
* @param n,m - orders of polynomial
|
|
* @param Sz - number of points
|
|
* @param P(i) - array with points coordinates (polar, r<=1)
|
|
* @param norm(o) - (optional) norm coefficient
|
|
* @return dynamically allocated array with Z(n,m) for given array P
|
|
*/
|
|
double *zernfun(int n, int m, int Sz, polar *P, double *norm){
|
|
if(check_parameters(n, m, Sz, P)) return NULL;
|
|
int j, k, m_abs = iabs(m), iup = (n-m_abs)/2;
|
|
double **Rpow = build_rpow(n, Sz, P);
|
|
double ZSum = 0.;
|
|
// now fill output matrix
|
|
double *Zarr = MALLOC(double, Sz); // output matrix
|
|
double *Zptr = Zarr;
|
|
polar *p = P;
|
|
for(j = 0; j < Sz; j++, p++, Zptr++){
|
|
double Z = 0.;
|
|
if(p->r > 1.) continue; // throw out points with R>1
|
|
// calculate R_n^m
|
|
for(k = 0; k <= iup; k++){ // Sum
|
|
double z = (1. - 2. * (k % 2)) * FK[n - k] // (-1)^k * (n-k)!
|
|
/(//----------------------------------- ----- -------------------------------
|
|
FK[k]*FK[(n+m_abs)/2-k]*FK[(n-m_abs)/2-k] // k!((n+|m|)/2-k)!((n-|m|)/2-k)!
|
|
);
|
|
Z += z * Rpow[n-2*k][j]; // *R^{n-2k}
|
|
}
|
|
// normalize
|
|
double eps_m = (m) ? 1. : 2.;
|
|
Z *= sqrt(2.*(n+1.) / M_PI / eps_m );
|
|
double m_theta = (double)m_abs * p->theta;
|
|
// multiply to angular function:
|
|
if(m){
|
|
if(m > 0)
|
|
Z *= cos(m_theta);
|
|
else
|
|
Z *= sin(m_theta);
|
|
}
|
|
*Zptr = Z;
|
|
ZSum += Z*Z;
|
|
}
|
|
if(norm) *norm = ZSum;
|
|
// free unneeded memory
|
|
free_rpow(&Rpow, n);
|
|
return Zarr;
|
|
}
|
|
|
|
/**
|
|
* Restoration of image in points P by Zernike polynomials' coefficients
|
|
* @param Zsz (i) - number of actual elements in coefficients array
|
|
* @param Zidxs(i) - array with Zernike coefficients
|
|
* @param Sz, P(i) - number (Sz) of points (P)
|
|
* @return restored image
|
|
*/
|
|
double *Zcompose(int Zsz, double *Zidxs, int Sz, polar *P){
|
|
int i;
|
|
double *image = MALLOC(double, Sz);
|
|
for(i = 0; i < Zsz; i++){ // now we fill array
|
|
double K = Zidxs[i];
|
|
if(fabs(K) < DBL_EPSILON) continue; // 0.0
|
|
int n, m;
|
|
convert_Zidx(i, &n, &m);
|
|
double *Zcoeff = zernfun(n, m, Sz, P, NULL);
|
|
int j;
|
|
double *iptr = image, *zptr = Zcoeff;
|
|
for(j = 0; j < Sz; j++, iptr++, zptr++)
|
|
*iptr += K * (*zptr); // add next Zernike polynomial
|
|
FREE(Zcoeff);
|
|
}
|
|
return image;
|
|
}
|
|
|
|
/**
|
|
* Save restored wavefront into file `filename`
|
|
* @param Sz - size of `P`
|
|
* @param P (i) - points coordinates
|
|
* @param Z (i) - wavefront shift (in lambdas)
|
|
* @param filename (i) - name of output file
|
|
* @return 1 if failed
|
|
*/
|
|
int z_save_wavefront(int Sz, polar *P, double *Z, char *filename){
|
|
if(!P || !Z || Sz < 0 || !filename) return 1;
|
|
FILE *f = fopen(filename, "w");
|
|
if(!f) return 1;
|
|
fprintf(f, "# X (-1..1)\tY (-1..1)\tZ (%ss)\n", outpunit);
|
|
int i;
|
|
for(i = 0; i < Sz; ++i, ++P, ++Z){
|
|
double x, y, s, c, r = P->r;
|
|
sincos(P->theta, &s, &c);
|
|
x = r * c, y = r * s;
|
|
fprintf(f, "%g\t%g\t%g\n", x, y, (*Z) * wf_coeff);
|
|
}
|
|
fclose(f);
|
|
return 0;
|
|
}
|