mirror of
https://github.com/eddyem/BTA_lib.git
synced 2025-12-06 10:45:11 +03:00
380 lines
11 KiB
Fortran
380 lines
11 KiB
Fortran
SUBROUTINE sla_PV2EL (PV, DATE, PMASS, JFORMR,
|
|
: JFORM, EPOCH, ORBINC, ANODE, PERIH,
|
|
: AORQ, E, AORL, DM, JSTAT)
|
|
*+
|
|
* - - - - - -
|
|
* P V 2 E L
|
|
* - - - - - -
|
|
*
|
|
* Heliocentric osculating elements obtained from instantaneous position
|
|
* and velocity.
|
|
*
|
|
* Given:
|
|
* PV d(6) heliocentric x,y,z,xdot,ydot,zdot of date,
|
|
* J2000 equatorial triad (AU,AU/s; Note 1)
|
|
* DATE d date (TT Modified Julian Date = JD-2400000.5)
|
|
* PMASS d mass of the planet (Sun=1; Note 2)
|
|
* JFORMR i requested element set (1-3; Note 3)
|
|
*
|
|
* Returned:
|
|
* JFORM d element set actually returned (1-3; Note 4)
|
|
* EPOCH d epoch of elements (TT MJD)
|
|
* ORBINC d inclination (radians)
|
|
* ANODE d longitude of the ascending node (radians)
|
|
* PERIH d longitude or argument of perihelion (radians)
|
|
* AORQ d mean distance or perihelion distance (AU)
|
|
* E d eccentricity
|
|
* AORL d mean anomaly or longitude (radians, JFORM=1,2 only)
|
|
* DM d daily motion (radians, JFORM=1 only)
|
|
* JSTAT i status: 0 = OK
|
|
* -1 = illegal PMASS
|
|
* -2 = illegal JFORMR
|
|
* -3 = position/velocity out of range
|
|
*
|
|
* Notes
|
|
*
|
|
* 1 The PV 6-vector is with respect to the mean equator and equinox of
|
|
* epoch J2000. The orbital elements produced are with respect to
|
|
* the J2000 ecliptic and mean equinox.
|
|
*
|
|
* 2 The mass, PMASS, is important only for the larger planets. For
|
|
* most purposes (e.g. asteroids) use 0D0. Values less than zero
|
|
* are illegal.
|
|
*
|
|
* 3 Three different element-format options are supported:
|
|
*
|
|
* Option JFORM=1, suitable for the major planets:
|
|
*
|
|
* EPOCH = epoch of elements (TT MJD)
|
|
* ORBINC = inclination i (radians)
|
|
* ANODE = longitude of the ascending node, big omega (radians)
|
|
* PERIH = longitude of perihelion, curly pi (radians)
|
|
* AORQ = mean distance, a (AU)
|
|
* E = eccentricity, e
|
|
* AORL = mean longitude L (radians)
|
|
* DM = daily motion (radians)
|
|
*
|
|
* Option JFORM=2, suitable for minor planets:
|
|
*
|
|
* EPOCH = epoch of elements (TT MJD)
|
|
* ORBINC = inclination i (radians)
|
|
* ANODE = longitude of the ascending node, big omega (radians)
|
|
* PERIH = argument of perihelion, little omega (radians)
|
|
* AORQ = mean distance, a (AU)
|
|
* E = eccentricity, e
|
|
* AORL = mean anomaly M (radians)
|
|
*
|
|
* Option JFORM=3, suitable for comets:
|
|
*
|
|
* EPOCH = epoch of perihelion (TT MJD)
|
|
* ORBINC = inclination i (radians)
|
|
* ANODE = longitude of the ascending node, big omega (radians)
|
|
* PERIH = argument of perihelion, little omega (radians)
|
|
* AORQ = perihelion distance, q (AU)
|
|
* E = eccentricity, e
|
|
*
|
|
* 4 It may not be possible to generate elements in the form
|
|
* requested through JFORMR. The caller is notified of the form
|
|
* of elements actually returned by means of the JFORM argument:
|
|
*
|
|
* JFORMR JFORM meaning
|
|
*
|
|
* 1 1 OK - elements are in the requested format
|
|
* 1 2 never happens
|
|
* 1 3 orbit not elliptical
|
|
*
|
|
* 2 1 never happens
|
|
* 2 2 OK - elements are in the requested format
|
|
* 2 3 orbit not elliptical
|
|
*
|
|
* 3 1 never happens
|
|
* 3 2 never happens
|
|
* 3 3 OK - elements are in the requested format
|
|
*
|
|
* 5 The arguments returned for each value of JFORM (cf Note 5: JFORM
|
|
* may not be the same as JFORMR) are as follows:
|
|
*
|
|
* JFORM 1 2 3
|
|
* EPOCH t0 t0 T
|
|
* ORBINC i i i
|
|
* ANODE Omega Omega Omega
|
|
* PERIH curly pi omega omega
|
|
* AORQ a a q
|
|
* E e e e
|
|
* AORL L M -
|
|
* DM n - -
|
|
*
|
|
* where:
|
|
*
|
|
* t0 is the epoch of the elements (MJD, TT)
|
|
* T " epoch of perihelion (MJD, TT)
|
|
* i " inclination (radians)
|
|
* Omega " longitude of the ascending node (radians)
|
|
* curly pi " longitude of perihelion (radians)
|
|
* omega " argument of perihelion (radians)
|
|
* a " mean distance (AU)
|
|
* q " perihelion distance (AU)
|
|
* e " eccentricity
|
|
* L " longitude (radians, 0-2pi)
|
|
* M " mean anomaly (radians, 0-2pi)
|
|
* n " daily motion (radians)
|
|
* - means no value is set
|
|
*
|
|
* 6 At very small inclinations, the longitude of the ascending node
|
|
* ANODE becomes indeterminate and under some circumstances may be
|
|
* set arbitrarily to zero. Similarly, if the orbit is close to
|
|
* circular, the true anomaly becomes indeterminate and under some
|
|
* circumstances may be set arbitrarily to zero. In such cases,
|
|
* the other elements are automatically adjusted to compensate,
|
|
* and so the elements remain a valid description of the orbit.
|
|
*
|
|
* 7 The osculating epoch for the returned elements is the argument
|
|
* DATE.
|
|
*
|
|
* Reference: Sterne, Theodore E., "An Introduction to Celestial
|
|
* Mechanics", Interscience Publishers, 1960
|
|
*
|
|
* Called: sla_DRANRM
|
|
*
|
|
* Last revision: 8 September 2005
|
|
*
|
|
* Copyright P.T.Wallace. All rights reserved.
|
|
*
|
|
* License:
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program (see SLA_CONDITIONS); if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place, Suite 330,
|
|
* Boston, MA 02111-1307 USA
|
|
*
|
|
*-
|
|
|
|
IMPLICIT NONE
|
|
|
|
DOUBLE PRECISION PV(6),DATE,PMASS
|
|
INTEGER JFORMR,JFORM
|
|
DOUBLE PRECISION EPOCH,ORBINC,ANODE,PERIH,AORQ,E,AORL,DM
|
|
INTEGER JSTAT
|
|
|
|
* Seconds to days
|
|
DOUBLE PRECISION DAY
|
|
PARAMETER (DAY=86400D0)
|
|
|
|
* Gaussian gravitational constant (exact)
|
|
DOUBLE PRECISION GCON
|
|
PARAMETER (GCON=0.01720209895D0)
|
|
|
|
* Sin and cos of J2000 mean obliquity (IAU 1976)
|
|
DOUBLE PRECISION SE,CE
|
|
PARAMETER (SE=0.3977771559319137D0,
|
|
: CE=0.9174820620691818D0)
|
|
|
|
* Minimum allowed distance (AU) and speed (AU/day)
|
|
DOUBLE PRECISION RMIN,VMIN
|
|
PARAMETER (RMIN=1D-3,VMIN=1D-8)
|
|
|
|
* How close to unity the eccentricity has to be to call it a parabola
|
|
DOUBLE PRECISION PARAB
|
|
PARAMETER (PARAB=1D-8)
|
|
|
|
DOUBLE PRECISION X,Y,Z,XD,YD,ZD,R,V2,V,RDV,GMU,HX,HY,HZ,
|
|
: HX2PY2,H2,H,OI,BIGOM,AR,ECC,S,C,AT,U,OM,
|
|
: GAR3,EM1,EP1,HAT,SHAT,CHAT,AE,AM,DN,PL,
|
|
: EL,Q,TP,THAT,THHF,F
|
|
|
|
INTEGER JF
|
|
|
|
DOUBLE PRECISION sla_DRANRM
|
|
|
|
|
|
* Validate arguments PMASS and JFORMR.
|
|
IF (PMASS.LT.0D0) THEN
|
|
JSTAT = -1
|
|
GO TO 999
|
|
END IF
|
|
IF (JFORMR.LT.1.OR.JFORMR.GT.3) THEN
|
|
JSTAT = -2
|
|
GO TO 999
|
|
END IF
|
|
|
|
* Provisionally assume the elements will be in the chosen form.
|
|
JF = JFORMR
|
|
|
|
* Rotate the position from equatorial to ecliptic coordinates.
|
|
X = PV(1)
|
|
Y = PV(2)*CE+PV(3)*SE
|
|
Z = -PV(2)*SE+PV(3)*CE
|
|
|
|
* Rotate the velocity similarly, scaling to AU/day.
|
|
XD = DAY*PV(4)
|
|
YD = DAY*(PV(5)*CE+PV(6)*SE)
|
|
ZD = DAY*(-PV(5)*SE+PV(6)*CE)
|
|
|
|
* Distance and speed.
|
|
R = SQRT(X*X+Y*Y+Z*Z)
|
|
V2 = XD*XD+YD*YD+ZD*ZD
|
|
V = SQRT(V2)
|
|
|
|
* Reject unreasonably small values.
|
|
IF (R.LT.RMIN.OR.V.LT.VMIN) THEN
|
|
JSTAT = -3
|
|
GO TO 999
|
|
END IF
|
|
|
|
* R dot V.
|
|
RDV = X*XD+Y*YD+Z*ZD
|
|
|
|
* Mu.
|
|
GMU = (1D0+PMASS)*GCON*GCON
|
|
|
|
* Vector angular momentum per unit reduced mass.
|
|
HX = Y*ZD-Z*YD
|
|
HY = Z*XD-X*ZD
|
|
HZ = X*YD-Y*XD
|
|
|
|
* Areal constant.
|
|
HX2PY2 = HX*HX+HY*HY
|
|
H2 = HX2PY2+HZ*HZ
|
|
H = SQRT(H2)
|
|
|
|
* Inclination.
|
|
OI = ATAN2(SQRT(HX2PY2),HZ)
|
|
|
|
* Longitude of ascending node.
|
|
IF (HX.NE.0D0.OR.HY.NE.0D0) THEN
|
|
BIGOM = ATAN2(HX,-HY)
|
|
ELSE
|
|
BIGOM=0D0
|
|
END IF
|
|
|
|
* Reciprocal of mean distance etc.
|
|
AR = 2D0/R-V2/GMU
|
|
|
|
* Eccentricity.
|
|
ECC = SQRT(MAX(1D0-AR*H2/GMU,0D0))
|
|
|
|
* True anomaly.
|
|
S = H*RDV
|
|
C = H2-R*GMU
|
|
IF (S.NE.0D0.OR.C.NE.0D0) THEN
|
|
AT = ATAN2(S,C)
|
|
ELSE
|
|
AT = 0D0
|
|
END IF
|
|
|
|
* Argument of the latitude.
|
|
S = SIN(BIGOM)
|
|
C = COS(BIGOM)
|
|
U = ATAN2((-X*S+Y*C)*COS(OI)+Z*SIN(OI),X*C+Y*S)
|
|
|
|
* Argument of perihelion.
|
|
OM = U-AT
|
|
|
|
* Capture near-parabolic cases.
|
|
IF (ABS(ECC-1D0).LT.PARAB) ECC=1D0
|
|
|
|
* Comply with JFORMR = 1 or 2 only if orbit is elliptical.
|
|
IF (ECC.GE.1D0) JF=3
|
|
|
|
* Functions.
|
|
GAR3 = GMU*AR*AR*AR
|
|
EM1 = ECC-1D0
|
|
EP1 = ECC+1D0
|
|
HAT = AT/2D0
|
|
SHAT = SIN(HAT)
|
|
CHAT = COS(HAT)
|
|
|
|
* Variable initializations to avoid compiler warnings.
|
|
AM = 0D0
|
|
DN = 0D0
|
|
PL = 0D0
|
|
EL = 0D0
|
|
Q = 0D0
|
|
TP = 0D0
|
|
|
|
* Ellipse?
|
|
IF (ECC.LT.1D0 ) THEN
|
|
|
|
* Eccentric anomaly.
|
|
AE = 2D0*ATAN2(SQRT(-EM1)*SHAT,SQRT(EP1)*CHAT)
|
|
|
|
* Mean anomaly.
|
|
AM = AE-ECC*SIN(AE)
|
|
|
|
* Daily motion.
|
|
DN = SQRT(GAR3)
|
|
END IF
|
|
|
|
* "Major planet" element set?
|
|
IF (JF.EQ.1) THEN
|
|
|
|
* Longitude of perihelion.
|
|
PL = BIGOM+OM
|
|
|
|
* Longitude at epoch.
|
|
EL = PL+AM
|
|
END IF
|
|
|
|
* "Comet" element set?
|
|
IF (JF.EQ.3) THEN
|
|
|
|
* Perihelion distance.
|
|
Q = H2/(GMU*EP1)
|
|
|
|
* Ellipse, parabola, hyperbola?
|
|
IF (ECC.LT.1D0) THEN
|
|
|
|
* Ellipse: epoch of perihelion.
|
|
TP = DATE-AM/DN
|
|
ELSE
|
|
|
|
* Parabola or hyperbola: evaluate tan ( ( true anomaly ) / 2 )
|
|
THAT = SHAT/CHAT
|
|
IF (ECC.EQ.1D0) THEN
|
|
|
|
* Parabola: epoch of perihelion.
|
|
TP = DATE-THAT*(1D0+THAT*THAT/3D0)*H*H2/(2D0*GMU*GMU)
|
|
ELSE
|
|
|
|
* Hyperbola: epoch of perihelion.
|
|
THHF = SQRT(EM1/EP1)*THAT
|
|
F = LOG(1D0+THHF)-LOG(1D0-THHF)
|
|
TP = DATE-(ECC*SINH(F)-F)/SQRT(-GAR3)
|
|
END IF
|
|
END IF
|
|
END IF
|
|
|
|
* Return the appropriate set of elements.
|
|
JFORM = JF
|
|
ORBINC = OI
|
|
ANODE = sla_DRANRM(BIGOM)
|
|
E = ECC
|
|
IF (JF.EQ.1) THEN
|
|
PERIH = sla_DRANRM(PL)
|
|
AORL = sla_DRANRM(EL)
|
|
DM = DN
|
|
ELSE
|
|
PERIH = sla_DRANRM(OM)
|
|
IF (JF.EQ.2) AORL = sla_DRANRM(AM)
|
|
END IF
|
|
IF (JF.NE.3) THEN
|
|
EPOCH = DATE
|
|
AORQ = 1D0/AR
|
|
ELSE
|
|
EPOCH = TP
|
|
AORQ = Q
|
|
END IF
|
|
JSTAT = 0
|
|
|
|
999 CONTINUE
|
|
END
|