mirror of
https://github.com/eddyem/BTA_lib.git
synced 2025-12-06 10:45:11 +03:00
181 lines
5.1 KiB
Fortran
181 lines
5.1 KiB
Fortran
SUBROUTINE sla_DEULER (ORDER, PHI, THETA, PSI, RMAT)
|
|
*+
|
|
* - - - - - - -
|
|
* D E U L E R
|
|
* - - - - - - -
|
|
*
|
|
* Form a rotation matrix from the Euler angles - three successive
|
|
* rotations about specified Cartesian axes (double precision)
|
|
*
|
|
* Given:
|
|
* ORDER c*(*) specifies about which axes the rotations occur
|
|
* PHI d 1st rotation (radians)
|
|
* THETA d 2nd rotation ( " )
|
|
* PSI d 3rd rotation ( " )
|
|
*
|
|
* Returned:
|
|
* RMAT d(3,3) rotation matrix
|
|
*
|
|
* A rotation is positive when the reference frame rotates
|
|
* anticlockwise as seen looking towards the origin from the
|
|
* positive region of the specified axis.
|
|
*
|
|
* The characters of ORDER define which axes the three successive
|
|
* rotations are about. A typical value is 'ZXZ', indicating that
|
|
* RMAT is to become the direction cosine matrix corresponding to
|
|
* rotations of the reference frame through PHI radians about the
|
|
* old Z-axis, followed by THETA radians about the resulting X-axis,
|
|
* then PSI radians about the resulting Z-axis.
|
|
*
|
|
* The axis names can be any of the following, in any order or
|
|
* combination: X, Y, Z, uppercase or lowercase, 1, 2, 3. Normal
|
|
* axis labelling/numbering conventions apply; the xyz (=123)
|
|
* triad is right-handed. Thus, the 'ZXZ' example given above
|
|
* could be written 'zxz' or '313' (or even 'ZxZ' or '3xZ'). ORDER
|
|
* is terminated by length or by the first unrecognized character.
|
|
*
|
|
* Fewer than three rotations are acceptable, in which case the later
|
|
* angle arguments are ignored. If all rotations are zero, the
|
|
* identity matrix is produced.
|
|
*
|
|
* P.T.Wallace Starlink 23 May 1997
|
|
*
|
|
* Copyright (C) 1997 Rutherford Appleton Laboratory
|
|
*
|
|
* License:
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program (see SLA_CONDITIONS); if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place, Suite 330,
|
|
* Boston, MA 02111-1307 USA
|
|
*
|
|
*-
|
|
|
|
IMPLICIT NONE
|
|
|
|
CHARACTER*(*) ORDER
|
|
DOUBLE PRECISION PHI,THETA,PSI,RMAT(3,3)
|
|
|
|
INTEGER J,I,L,N,K
|
|
DOUBLE PRECISION RESULT(3,3),ROTN(3,3),ANGLE,S,C,W,WM(3,3)
|
|
CHARACTER AXIS
|
|
|
|
|
|
|
|
* Initialize result matrix
|
|
DO J=1,3
|
|
DO I=1,3
|
|
IF (I.NE.J) THEN
|
|
RESULT(I,J) = 0D0
|
|
ELSE
|
|
RESULT(I,J) = 1D0
|
|
END IF
|
|
END DO
|
|
END DO
|
|
|
|
* Establish length of axis string
|
|
L = LEN(ORDER)
|
|
|
|
* Look at each character of axis string until finished
|
|
DO N=1,3
|
|
IF (N.LE.L) THEN
|
|
|
|
* Initialize rotation matrix for the current rotation
|
|
DO J=1,3
|
|
DO I=1,3
|
|
IF (I.NE.J) THEN
|
|
ROTN(I,J) = 0D0
|
|
ELSE
|
|
ROTN(I,J) = 1D0
|
|
END IF
|
|
END DO
|
|
END DO
|
|
|
|
* Pick up the appropriate Euler angle and take sine & cosine
|
|
IF (N.EQ.1) THEN
|
|
ANGLE = PHI
|
|
ELSE IF (N.EQ.2) THEN
|
|
ANGLE = THETA
|
|
ELSE
|
|
ANGLE = PSI
|
|
END IF
|
|
S = SIN(ANGLE)
|
|
C = COS(ANGLE)
|
|
|
|
* Identify the axis
|
|
AXIS = ORDER(N:N)
|
|
IF (AXIS.EQ.'X'.OR.
|
|
: AXIS.EQ.'x'.OR.
|
|
: AXIS.EQ.'1') THEN
|
|
|
|
* Matrix for x-rotation
|
|
ROTN(2,2) = C
|
|
ROTN(2,3) = S
|
|
ROTN(3,2) = -S
|
|
ROTN(3,3) = C
|
|
|
|
ELSE IF (AXIS.EQ.'Y'.OR.
|
|
: AXIS.EQ.'y'.OR.
|
|
: AXIS.EQ.'2') THEN
|
|
|
|
* Matrix for y-rotation
|
|
ROTN(1,1) = C
|
|
ROTN(1,3) = -S
|
|
ROTN(3,1) = S
|
|
ROTN(3,3) = C
|
|
|
|
ELSE IF (AXIS.EQ.'Z'.OR.
|
|
: AXIS.EQ.'z'.OR.
|
|
: AXIS.EQ.'3') THEN
|
|
|
|
* Matrix for z-rotation
|
|
ROTN(1,1) = C
|
|
ROTN(1,2) = S
|
|
ROTN(2,1) = -S
|
|
ROTN(2,2) = C
|
|
|
|
ELSE
|
|
|
|
* Unrecognized character - fake end of string
|
|
L = 0
|
|
|
|
END IF
|
|
|
|
* Apply the current rotation (matrix ROTN x matrix RESULT)
|
|
DO I=1,3
|
|
DO J=1,3
|
|
W = 0D0
|
|
DO K=1,3
|
|
W = W+ROTN(I,K)*RESULT(K,J)
|
|
END DO
|
|
WM(I,J) = W
|
|
END DO
|
|
END DO
|
|
DO J=1,3
|
|
DO I=1,3
|
|
RESULT(I,J) = WM(I,J)
|
|
END DO
|
|
END DO
|
|
|
|
END IF
|
|
|
|
END DO
|
|
|
|
* Copy the result
|
|
DO J=1,3
|
|
DO I=1,3
|
|
RMAT(I,J) = RESULT(I,J)
|
|
END DO
|
|
END DO
|
|
|
|
END
|