mirror of
https://github.com/eddyem/BTA_lib.git
synced 2025-12-06 18:55:14 +03:00
118 lines
3.0 KiB
Fortran
118 lines
3.0 KiB
Fortran
SUBROUTINE sla_PDA2H (P, D, A, H1, J1, H2, J2)
|
|
*+
|
|
* - - - - - -
|
|
* P D A 2 H
|
|
* - - - - - -
|
|
*
|
|
* Hour Angle corresponding to a given azimuth
|
|
*
|
|
* (double precision)
|
|
*
|
|
* Given:
|
|
* P d latitude
|
|
* D d declination
|
|
* A d azimuth
|
|
*
|
|
* Returned:
|
|
* H1 d hour angle: first solution if any
|
|
* J1 i flag: 0 = solution 1 is valid
|
|
* H2 d hour angle: second solution if any
|
|
* J2 i flag: 0 = solution 2 is valid
|
|
*
|
|
* Called: sla_DRANGE
|
|
*
|
|
* P.T.Wallace Starlink 6 October 1994
|
|
*
|
|
* Copyright (C) 1995 Rutherford Appleton Laboratory
|
|
*
|
|
* License:
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program (see SLA_CONDITIONS); if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place, Suite 330,
|
|
* Boston, MA 02111-1307 USA
|
|
*
|
|
*-
|
|
|
|
IMPLICIT NONE
|
|
|
|
DOUBLE PRECISION P,D,A,H1
|
|
INTEGER J1
|
|
DOUBLE PRECISION H2
|
|
INTEGER J2
|
|
|
|
DOUBLE PRECISION DPI
|
|
PARAMETER (DPI=3.141592653589793238462643D0)
|
|
DOUBLE PRECISION D90
|
|
PARAMETER (D90=DPI/2D0)
|
|
DOUBLE PRECISION TINY
|
|
PARAMETER (TINY=1D-12)
|
|
DOUBLE PRECISION PN,AN,DN,SA,CA,SASP,QT,QB,HPT,T
|
|
DOUBLE PRECISION sla_DRANGE
|
|
|
|
|
|
* Preset status flags to OK
|
|
J1=0
|
|
J2=0
|
|
|
|
* Adjust latitude, azimuth, declination to avoid critical values
|
|
PN=sla_DRANGE(P)
|
|
IF (ABS(ABS(PN)-D90).LT.TINY) THEN
|
|
PN=PN-SIGN(TINY,PN)
|
|
ELSE IF (ABS(PN).LT.TINY) THEN
|
|
PN=TINY
|
|
END IF
|
|
AN=sla_DRANGE(A)
|
|
IF (ABS(ABS(AN)-DPI).LT.TINY) THEN
|
|
AN=AN-SIGN(TINY,AN)
|
|
ELSE IF (ABS(AN).LT.TINY) THEN
|
|
AN=TINY
|
|
END IF
|
|
DN=sla_DRANGE(D)
|
|
IF (ABS(ABS(DN)-ABS(P)).LT.TINY) THEN
|
|
DN=DN-SIGN(TINY,DN)
|
|
ELSE IF (ABS(ABS(DN)-D90).LT.TINY) THEN
|
|
DN=DN-SIGN(TINY,DN)
|
|
ELSE IF (ABS(DN).LT.TINY) THEN
|
|
DN=TINY
|
|
END IF
|
|
|
|
* Useful functions
|
|
SA=SIN(AN)
|
|
CA=COS(AN)
|
|
SASP=SA*SIN(PN)
|
|
|
|
* Quotient giving sin(h+t)
|
|
QT=SIN(DN)*SA*COS(PN)
|
|
QB=COS(DN)*SQRT(CA*CA+SASP*SASP)
|
|
|
|
* Any solutions?
|
|
IF (ABS(QT).LE.QB) THEN
|
|
|
|
* Yes: find h+t and t
|
|
HPT=ASIN(QT/QB)
|
|
T=ATAN2(SASP,-CA)
|
|
|
|
* The two solutions
|
|
H1=sla_DRANGE(HPT-T)
|
|
H2=sla_DRANGE(-HPT-(T+DPI))
|
|
|
|
* Reject unless h and A different signs
|
|
IF (H1*AN.GT.0D0) J1=-1
|
|
IF (H2*AN.GT.0D0) J2=-1
|
|
ELSE
|
|
J1=-1
|
|
J2=-1
|
|
END IF
|
|
|
|
END
|