2023-02-04 12:05:21 +03:00

559 lines
22 KiB
C

/*
* This file is part of the mxl90640wPi project.
* Copyright 2022 Edward V. Emelianov <edward.emelianoff@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <usefull_macros.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <asm/ioctl.h>
#include <linux/i2c.h>
#include <linux/i2c-dev.h>
#include "mlx90640.h"
#include "mlx90640_regs.h"
static int I2Cfd = -1;
static uint8_t lastaddr = 0;
static MLX90640_params params;
static uint16_t dataarray[MLX_DMA_MAXLEN]; // array for raw data from sensor
static double mlx_image[MLX_PIXNO]; // ready image
#define CREG_VAL(reg) dataarray[CREG_IDX(reg)]
#define IMD_VAL(reg) dataarray[IMD_IDX(reg)]
// reg_control values for subpage #0 and #1
static const uint16_t reg_control_val[2] = {
REG_CONTROL_CHESS | REG_CONTROL_RES18 | REG_CONTROL_REFR_8HZ | REG_CONTROL_SUBPSEL | REG_CONTROL_DATAHOLD | REG_CONTROL_SUBPEN,
REG_CONTROL_CHESS | REG_CONTROL_RES18 | REG_CONTROL_REFR_8HZ | REG_CONTROL_SUBP1 | REG_CONTROL_SUBPSEL | REG_CONTROL_DATAHOLD | REG_CONTROL_SUBPEN
};
static int errctr = 0;
static double Tlast = 0.;
#define chstate() do{errctr = 0; Tlast = dtime(); DBG("chstate()");}while(0)
#define chkerr() do{DBG("chkerr(), T=%g", dtime()-Tlast); if(++errctr > MLX_MAXERR_COUNT){ DBG("-> M_ERROR"); return FALSE;}else continue;}while(0)
#define chktmout() do{/*DBG("chktmout, T=%g", dtime()-Tlast);*/ if(dtime() - Tlast > MLX_TIMEOUT){ DBG("Timeout! -> M_ERROR"); return FALSE;}else continue;}while(0)
// read register value
static int read_reg(uint16_t regaddr, uint16_t *data){
if(I2Cfd < 1) return FALSE;
struct i2c_msg m[2];
struct i2c_rdwr_ioctl_data x = {.msgs = m, .nmsgs = 2};
m[0].addr = lastaddr; m[1].addr = lastaddr;
m[0].flags = 0;
m[1].flags = I2C_M_RD;
m[0].len = 2; m[1].len = 2;
uint8_t a[2], d[2] = {0};
a[0] = regaddr >> 8;
a[1] = regaddr & 0xff;
m[0].buf = a; m[1].buf = d;
if(ioctl(I2Cfd, I2C_RDWR, &x) < 0) return FALSE;
if(data) *data = (uint16_t)((d[0] << 8) | (d[1]));
return TRUE;
}
//#if 0
// read N values starting from regaddr
static int read_regN(uint16_t regaddr, uint16_t *data, uint16_t N){
if(I2Cfd < 1 || N > 128 || N == 0) return FALSE;
struct i2c_msg m[2];
struct i2c_rdwr_ioctl_data x = {.msgs = m, .nmsgs = 2};
m[0].addr = lastaddr; m[1].addr = lastaddr;
m[0].flags = 0;
m[1].flags = I2C_M_RD;
m[0].len = 2; m[1].len = N * 2;
uint8_t a[2], d[256] = {0};
a[0] = regaddr >> 8;
a[1] = regaddr & 0xff;
m[0].buf = a; m[1].buf = d;
if(ioctl(I2Cfd, I2C_RDWR, &x) < 0) return FALSE;
if(data) for(int i = 0; i < N; ++i){
// DBG("Read 0x%04x from reg 0x%04x", (uint16_t)((d[2*i] << 8) | (d[2*i+1])), regaddr+i);
*data++ = (uint16_t)((d[2*i] << 8) | (d[2*i + 1]));
}
return TRUE;
}
// blocking read N uint16_t values starting from `reg`
// @param reg - register to read
// @param N (io) - amount of bytes to read / bytes read
// @return `dataarray` or NULL if failed
static uint16_t *read_data(uint16_t reg, uint16_t *N){
if(I2Cfd < 1 || !N || *N < 1) return NULL;
uint16_t n = *N;
if(n < 1 || n > MLX_DMA_MAXLEN) return NULL;
uint16_t *data = dataarray;
uint16_t got = 0, rest = *N;
do{
uint8_t l = (rest > 128) ? 128 : (uint8_t)rest;
if(!read_regN(reg, data, l)){
DBG("can't read");
break;
}
rest -= l;
reg += l;
data += l;
got += l;
}while(rest);
*N = got;
return dataarray;
}
//#endif
#if 0
// blocking read N uint16_t values starting from `reg`
// @param reg - register to read
// @param N (io) - amount of bytes to read / bytes read
// @return `dataarray` or NULL if failed
static uint16_t *read_data(uint16_t reg, uint16_t *N){
if(I2Cfd < 1 || !N || *N < 1) return NULL;
uint16_t n = *N;
if(n < 1 || n > MLX_DMA_MAXLEN) return NULL;
uint16_t i, *data = dataarray;
for(i = 0; i < n; ++i){
if(!read_reg(reg++, data++)){
DBG("can't read");
break;
}
}
*N = i;
return dataarray;
}
#endif
// write register value
static int write_reg(uint16_t regaddr, uint16_t data){
if(I2Cfd < 1) return FALSE;
union i2c_smbus_data d;
d.block[0] = 3;
d.block[1] = regaddr & 0xff;
d.block[2] = data >> 8;
d.block[3] = data & 0xff;
struct i2c_smbus_ioctl_data args;
args.read_write = I2C_SMBUS_WRITE;
args.command = regaddr >> 8;
args.size = I2C_SMBUS_I2C_BLOCK_DATA;
args.data = &d;
if(ioctl(I2Cfd, I2C_SMBUS, &args) < 0) return FALSE;
return TRUE;
}
int mlx90640_set_slave_address(uint8_t addr){
if(I2Cfd < 1) return FALSE;
if(ioctl (I2Cfd, I2C_SLAVE, addr) < 0) return FALSE;
lastaddr = addr;
return TRUE;
}
static void dumpIma(double *im){
for(int row = 0; row < MLX_H; ++row){
for(int col = 0; col < MLX_W; ++col){
printf("%5.1f ", *im++);
}
printf("\n");
}
}
void mlx90640_dump_parameters(){
printf("kVdd=%d\nvdd25=%d\nKvPTAT=%g\nKtPTAT=%g\nvPTAT25=%d\n", params.kVdd, params.vdd25, params.KvPTAT, params.KtPTAT, params.vPTAT25);
printf("alphaPTAT=%g\ngainEE=%d\ntgc=%g\ncpKv=%g\ncpKta=%g\n", params.alphaPTAT, params.gainEE, params.tgc, params.cpKta, params.cpKta);
printf("KsTa=%g\nCT[]={%g, %g, %g}\n", params.KsTa, params.CT[0], params.CT[1], params.CT[2]);
printf("ksTo[]={"); for(int i = 0; i < 4; ++i) printf("%s%g", (i) ? ", " : "", params.ksTo[i]); printf("}\n");
printf("alphacorr[]={"); for(int i = 0; i < 4; ++i) printf("%s%g", (i) ? ", " : "", params.alphacorr[i]); printf("}\n");
printf("alpha[]=\n"); dumpIma(params.alpha);
printf("offset[]=\n"); dumpIma(params.offset);
printf("kta[]=\n"); dumpIma(params.kta);
printf("kv[]={"); for(int i = 0; i < 4; ++i) printf("%s%g", (i) ? ", " : "", params.kv[i]); printf("}\n");
printf("cpAlpha[]={%g, %g}\n", params.cpAlpha[0], params.cpAlpha[1]);
printf("cpOffset[]={%d, %d}\n", params.cpOffset[0], params.cpOffset[1]);
printf("outliers[]=\n");
uint8_t *o = params.outliers;
for(int row = 0; row < MLX_H; ++row){
for(int col = 0; col < MLX_W; ++col){
printf("%d ", *o++);
}
printf("\n");
}
}
/*****************************************************************************
Calculate parameters & values
*****************************************************************************/
// fill OCC/ACC row/col arrays
static void occacc(int8_t *arr, int l, uint16_t *regstart){
int n = l >> 2; // divide by 4
int8_t *p = arr;
for(int i = 0; i < n; ++i){
register uint16_t val = *regstart++;
*p++ = (val & 0x000F) >> 0;
*p++ = (val & 0x00F0) >> 4;
*p++ = (val & 0x0F00) >> 8;
*p++ = (val ) >> 12;
}
for(int i = 0; i < l; ++i, ++arr){
if(*arr > 0x07) *arr -= 0x10;
}
}
// get all parameters' values from `dataarray`, return FALSE if something failed
static int get_parameters(){
int8_t i8;
int16_t i16;
uint16_t *pu16;
uint16_t val = CREG_VAL(REG_VDD);
i8 = (int8_t) (val >> 8);
params.kVdd = i8 * 32; // keep sign
if(params.kVdd == 0) return FALSE;
i16 = val & 0xFF;
params.vdd25 = ((i16 - 0x100) * 32) - (1<<13);
val = CREG_VAL(REG_KVTPTAT);
i16 = (val & 0xFC00) >> 10;
if(i16 > 0x1F) i16 -= 0x40;
params.KvPTAT = (double)i16 / (1<<12);
i16 = (val & 0x03FF);
if(i16 > 0x1FF) i16 -= 0x400;
params.KtPTAT = (double)i16 / 8.;
params.vPTAT25 = (int16_t) CREG_VAL(REG_PTAT);
val = CREG_VAL(REG_APTATOCCS) >> 12;
params.alphaPTAT = val / 4. + 8.;
params.gainEE = (int16_t)CREG_VAL(REG_GAIN);
if(params.gainEE == 0) return FALSE;
int8_t occRow[MLX_H];
int8_t occColumn[MLX_W];
occacc(occRow, MLX_H, &CREG_VAL(REG_OCCROW14));
occacc(occColumn, MLX_W, &CREG_VAL(REG_OCCCOL14));
int8_t accRow[MLX_H];
int8_t accColumn[MLX_W];
occacc(accRow, MLX_H, &CREG_VAL(REG_ACCROW14));
occacc(accColumn, MLX_W, &CREG_VAL(REG_ACCCOL14));
val = CREG_VAL(REG_APTATOCCS);
// need to do multiplication instead of bitshift, so:
double occRemScale = 1<<(val&0x0F),
occColumnScale = 1<<((val>>4)&0x0F),
occRowScale = 1<<((val>>8)&0x0F);
int16_t offavg = (int16_t) CREG_VAL(REG_OSAVG);
// even/odd column/row numbers are for starting from 1, so for starting from 0 we chould swap them:
// even - for 1,3,5,...; odd - for 0,2,4,... etc
int8_t ktaavg[4];
// 0 - odd row, odd col; 1 - odd row even col; 2 - even row, odd col; 3 - even row, even col
val = CREG_VAL(REG_KTAAVGODDCOL);
ktaavg[2] = (int8_t)(val & 0xFF); // odd col (1,3,..), even row (2,4,..) -> col 0,2,..; row 1,3,..
ktaavg[0] = (int8_t)(val >> 8); // odd col, odd row -> col 0,2,..; row 0,2,..
val = CREG_VAL(REG_KTAAVGEVENCOL);
ktaavg[3] = (int8_t)(val & 0xFF); // even col, even row -> col 1,3,..; row 1,3,..
ktaavg[1] = (int8_t)(val >> 8); // even col, odd row -> col 1,3,..; row 0,2,..
// so index of ktaavg is 2*(row&1)+(col&1)
val = CREG_VAL(REG_KTAVSCALE);
uint8_t scale1 = ((val & 0xFF)>>4) + 8, scale2 = (val&0xF);
if(scale1 == 0 || scale2 == 0) return FALSE;
double mul = (double)(1<<scale2), div = (double)(1<<scale1); // kta_scales
uint16_t a_r = CREG_VAL(REG_SENSIVITY); // alpha_ref
val = CREG_VAL(REG_SCALEACC);
double *a = params.alpha, diva = (double)(val >> 12);
diva *= (double)(1<<30); // alpha_scale
double accRowScale = 1<<((val & 0x0f00)>>8),
accColumnScale = 1<<((val & 0x00f0)>>4),
accRemScale = 1<<(val & 0x0f);
pu16 = &CREG_VAL(REG_OFFAK1);
double *kta = params.kta, *offset = params.offset;
uint8_t *ol = params.outliers;
for(int row = 0; row < MLX_H; ++row){
int idx = (row&1)<<1;
for(int col = 0; col < MLX_W; ++col){
// offset
register uint16_t rv = *pu16++;
i16 = (rv & 0xFC00) >> 10;
if(i16 > 0x1F) i16 -= 0x40;
*offset++ = (double)offavg + (double)occRow[row]*occRowScale + (double)occColumn[col]*occColumnScale + (double)i16*occRemScale;
// kta
i16 = (rv & 0xF) >> 1;
if(i16 > 0x03) i16 -= 0x08;
*kta++ = (ktaavg[idx|(col&1)] + i16*mul) / div;
// alpha
i16 = (rv & 0x3F0) >> 4;
if(i16 > 0x1F) i16 -= 0x40;
double oft = (double)a_r + accRow[row]*accRowScale + accColumn[col]*accColumnScale +i16*accRemScale;
*a++ = oft / diva;
*ol++ = (rv&1) ? 1 : 0;
}
}
scale1 = (CREG_VAL(REG_KTAVSCALE) >> 8) & 0xF; // kvscale
div = (double)(1<<scale1);
val = CREG_VAL(REG_KVAVG);
i16 = val >> 12; if(i16 > 0x07) i16 -= 0x10;
ktaavg[0] = (int8_t)i16; // odd col, odd row
i16 = (val & 0xF0) >> 4; if(i16 > 0x07) i16 -= 0x10;
ktaavg[1] = (int8_t)i16; // even col, odd row
i16 = (val & 0x0F00) >> 8; if(i16 > 0x07) i16 -= 0x10;
ktaavg[2] = (int8_t)i16; // odd col, even row
i16 = val & 0x0F; if(i16 > 0x07) i16 -= 0x10;
ktaavg[3] = (int8_t)i16; // even col, even row
for(int i = 0; i < 4; ++i) params.kv[i] = ktaavg[i] / div;
val = CREG_VAL(REG_CPOFF);
params.cpOffset[0] = (val & 0x03ff);
if(params.cpOffset[0] > 0x1ff) params.cpOffset[0] -= 0x400;
params.cpOffset[1] = val >> 10;
if(params.cpOffset[1] > 0x1f) params.cpOffset[1] -= 0x40;
params.cpOffset[1] += params.cpOffset[0];
val = ((CREG_VAL(REG_KTAVSCALE) & 0xF0) >> 4) + 8;
i8 = (int8_t)(CREG_VAL(REG_KVTACP) & 0xFF);
params.cpKta = (double)i8 / (1<<val);
val = (CREG_VAL(REG_KTAVSCALE) & 0x0F00) >> 8;
i16 = CREG_VAL(REG_KVTACP) >> 8;
if(i16 > 0x7F) i16 -= 0x100;
params.cpKv = (double)i16 / (1<<val);
i16 = CREG_VAL(REG_KSTATGC) & 0xFF;
if(i16 > 0x7F) i16 -= 0x100;
params.tgc = (double)i16;
params.tgc /= 32.;
val = (CREG_VAL(REG_SCALEACC)>>12); // alpha_scale_CP
i16 = CREG_VAL(REG_ALPHA)>>10; // cp_P1_P0_ratio
if(i16 > 0x1F) i16 -= 0x40;
div = (double)(1<<val);
div *= (double)(1<<27);
params.cpAlpha[0] = (double)(CREG_VAL(REG_ALPHA) & 0x03FF) / div;
div = (double)(1<<7);
params.cpAlpha[1] = params.cpAlpha[0] * (1. + (double)i16/div);
i8 = (int8_t)(CREG_VAL(REG_KSTATGC) >> 8);
params.KsTa = (double)i8/(1<<13);
div = 1<<((CREG_VAL(REG_CT34) & 0x0F) + 8); // kstoscale
DBG("kstoscale=%g (regct34=0x%04x)", div, CREG_VAL(REG_CT34));
val = CREG_VAL(REG_KSTO12);
DBG("ksto12=0x%04x", val);
i8 = (int8_t)(val & 0xFF);
DBG("To1ee=%d", i8);
params.ksTo[0] = i8 / div;
i8 = (int8_t)(val >> 8);
DBG("To2ee=%d", i8);
params.ksTo[1] = i8 / div;
val = CREG_VAL(REG_KSTO34);
DBG("ksto34=0x%04x", val);
i8 = (int8_t)(val & 0xFF);
DBG("To3ee=%d", i8);
params.ksTo[2] = i8 / div;
i8 = (int8_t)(val >> 8);
DBG("To4ee=%d", i8);
params.ksTo[3] = i8 / div;
params.CT[0] = 0.; // 0degr - between ranges 1 and 2
val = CREG_VAL(REG_CT34);
mul = ((val & 0x3000)>>12)*10.; // step
params.CT[1] = ((val & 0xF0)>>4)*mul; // CT3 - between ranges 2 and 3
params.CT[2] = ((val & 0x0F00) >> 8)*mul + params.CT[1]; // CT4 - between ranges 3 and 4
params.alphacorr[0] = 1./(1. + params.ksTo[0] * 40.);
params.alphacorr[1] = 1.;
params.alphacorr[2] = (1. + params.ksTo[1] * params.CT[1]);
params.alphacorr[3] = (1. + params.ksTo[2] * (params.CT[2] - params.CT[1])) * params.alphacorr[2];
params.resolEE = (uint8_t)((CREG_VAL(REG_KTAVSCALE) & 0x3000) >> 12);
// Don't forget to check 'outlier' flags for wide purpose
return TRUE;
}
/**
* @brief process_subpage - calculate all parameters from `dataarray` into `mlx_image`
* @param subpageno - number of subpage
* @param simpleimage == 0 - simplest, 1 - narrow range, 2 - extended range
*/
static void process_subpage(int subpageno, int simpleimage){
DBG("\nprocess_subpage(%d)", subpageno);
#ifdef EBUG
chstate();
#endif
double resol_corr = (double)(1<<params.resolEE) / (1<<((reg_control_val[subpageno]&0x0C00)>>10)); // calibrated resol/current resol
DBG("resolEE=%d, resolCur=%d", params.resolEE, ((reg_control_val[subpageno]&0x0C00)>>10));
int16_t i16a = (int16_t)IMD_VAL(REG_IVDDPIX);
double dvdd = resol_corr*i16a - params.vdd25;
dvdd /= params.kVdd;
double dV = i16a - params.vdd25;
dV /= params.kVdd;
DBG("ram=%d, vdd25=%d, dvdd=%g, resol=%g", i16a, params.vdd25, dvdd, resol_corr);
DBG("Vd=%g", dvdd+3.3);
i16a = (int16_t)IMD_VAL(REG_ITAPTAT);
int16_t i16b = (int16_t)IMD_VAL(REG_ITAVBE);
double dTa = (double)i16a / (i16a * params.alphaPTAT + i16b); // vptatart
dTa *= (double)(1<<18);
dTa = (dTa / (1. + params.KvPTAT*dV) - params.vPTAT25);
dTa = dTa / params.KtPTAT; // without 25degr - Ta0
DBG("Ta=%g", dTa+25.);
i16a = (int16_t)IMD_VAL(REG_IGAIN);
double Kgain = params.gainEE / (double)i16a;
DBG("Kgain=%g", Kgain);
double pixOS[2]; // pix_gain_CP_SPx
// 11.2.2.6.1
pixOS[0] = ((int16_t)IMD_VAL(REG_ICPSP0))*Kgain; // pix_OS_CP_SPx
pixOS[1] = ((int16_t)IMD_VAL(REG_ICPSP1))*Kgain;
DBG("pixGain: %g/%g", pixOS[0], pixOS[1]);
for(int i = 0; i < 2; ++i){ // calc pixOS by gain
// 11.2.2.6.2
pixOS[i] -= params.cpOffset[i]*(1. + params.cpKta*dTa)*(1. + params.cpKv*dvdd);
}
// now make first approximation to image
uint16_t pixno = 0; // current pixel number - for indexing in parameters etc
for(int row = 0; row < MLX_H; ++row){
int idx = (row&1)<<1; // index for params.kv
for(int col = 0; col < MLX_W; ++col, ++pixno){
uint8_t sp = (row&1)^(col&1); // subpage of current pixel
if(sp != subpageno) continue;
// 11.2.2.5.1
double curval = (double)((int16_t)dataarray[pixno]) * Kgain; // gain compensation
// 11.2.2.5.3
curval -= params.offset[pixno] * (1. + params.kta[pixno]*dTa) *
(1. + params.kv[idx|(col&1)]*dvdd); // add offset
// now `curval` is pix_OS == V_IR_emiss_comp
// 11.2.2.7
double IRcompens = curval - params.tgc * pixOS[subpageno]; // IR_compensated
if(simpleimage == 0){ // ???
curval = IRcompens;
/*
curval -= params.cpOffset[subpageno] * (1. - params.cpKta * dTa) *
(1. + params.cpKv * dvdd); // CP
curval = IRcompens - params.tgc * curval; // IR gradient compens
*/
}else{
// 11.2.2.8
double alphaComp = params.alpha[pixno] - params.tgc * params.cpAlpha[subpageno];
alphaComp /= 1. + params.KsTa * dTa;
// 11.2.2.9: calculate To for basic range
double Tar = dTa + 273.15 + 25.; // Ta+273.15
Tar = Tar*Tar*Tar*Tar; // T_aK4 (when \epsilon==1 this is T_{a-r} too)
double ac3 = alphaComp*alphaComp*alphaComp;
double Sx = ac3*IRcompens + alphaComp*ac3*Tar;
Sx = params.ksTo[1] * sqrt(sqrt(Sx));
double To = IRcompens / (alphaComp * (1. - 273.15*params.ksTo[1]) + Sx) + Tar;
curval = sqrt(sqrt(To)) - 273.15; // To
// extended range
if(simpleimage == 2){
int idx = 0; // range 1 by default
double ctx = -40.;
if(curval > params.CT[0] && curval < params.CT[1]){ // range 2
idx = 1; ctx = params.CT[0];
}else if(curval < params.CT[2]){ // range 3
idx = 2; ctx = params.CT[1];
}else{ // range 4
idx = 3; ctx = params.CT[2];
}
To = IRcompens / (alphaComp * params.alphacorr[idx] * (1. + params.ksTo[idx]*(curval - ctx))) + Tar;
curval = sqrt(sqrt(To)) - 273.15;
}
}
mlx_image[pixno] = curval;
}
}
DBG("Time: %g", dtime()-Tlast);
}
static int process_readconf(){
chstate();
while(1){
if(get_parameters()) return TRUE;
else chkerr();
}
}
static int process_firstrun(){
uint16_t reg, N;
write_reg(REG_CONTROL, REG_CONTROL_DEFAULT);
usleep(50);
write_reg(REG_CONTROL, REG_CONTROL_DEFAULT);
usleep(50);
chstate();
while(1){
if(write_reg(REG_CONTROL, reg_control_val[0])
&& read_reg(REG_CONTROL, &reg)){
DBG("REG_CTRL=0x%04x, T=%g", reg, dtime()-Tlast);
if(read_reg(REG_STATUS, &reg)) DBG("REG_STATUS=0x%04x", reg);
N = REG_CALIDATA_LEN;
if(read_data(REG_CALIDATA, &N)){
DBG("-> M_READCONF, T=%g", dtime()-Tlast);
return process_readconf();
}else chkerr();
}else chkerr();
}
return FALSE;
}
// start image acquiring for next subpage
static int process_startima(int subpageno){
chstate();
DBG("startima(%d)", subpageno);
uint16_t reg, N;
while(1){
// write `overwrite` flag twice
if(!write_reg(REG_CONTROL, reg_control_val[subpageno]) ||
!write_reg(REG_STATUS, REG_STATUS_OVWEN) ||
!write_reg(REG_STATUS, REG_STATUS_OVWEN)) chkerr();
while(1){
if(read_reg(REG_STATUS, &reg)){
if(reg & REG_STATUS_NEWDATA){
DBG("got newdata: %g", dtime() - Tlast);
if(subpageno != (reg & REG_STATUS_SPNO)){
DBG("wrong subpage number -> M_ERROR");
return FALSE;
}else{ // all OK, run image reading
chstate();
write_reg(REG_STATUS, 0); // clear rdy bit
N = MLX_PIXARRSZ;
if(read_data(REG_IMAGEDATA, &N) && N == MLX_PIXARRSZ){
DBG("got readoutm N=%d: %g", N, dtime() - Tlast);
return TRUE;
}else chkerr();
}
}else chktmout();
}else chkerr();
}
}
return FALSE;
}
void mlx90640_restart(){
memset(&params, 0, sizeof(params));
process_firstrun();
}
// if state of MLX allows, make an image else return error
// @param simple ==1 for simplest image processing (without T calibration)
int mlx90640_take_image(uint8_t simple, double **image){
if(I2Cfd < 1) return FALSE;
if(params.kVdd == 0){ // no parameters -> make first run
if(!process_firstrun()) return FALSE;
}
DBG("\n\n\n-> M_STARTIMA");
for(int sp = 0; sp < 2; ++sp){
if(!process_startima(sp)) return FALSE; // get first subpage
process_subpage(sp, simple);
}
if(image) *image = mlx_image;
return TRUE;
}
int mlx90640_init(const char *dev, uint8_t ID){
if(I2Cfd > 0) close(I2Cfd);
I2Cfd = open(dev, O_RDWR);
if(I2Cfd < 1) return FALSE;
if(!mlx90640_set_slave_address(ID)) return FALSE;
if(!read_reg(0, NULL)) return FALSE;
if(!process_firstrun()) return FALSE;
return TRUE;
}